• 제목/요약/키워드: End vibration

검색결과 752건 처리시간 0.023초

이중 전동식 진동 시험기를 이용한 무인 비행체의 비행진동 환경시험 연구 (A Study On Flight Vibration Environmental Test of Unmanned Aerial Vehicle using Dual Electric Vibration Exciters)

  • 최장섭;오동호
    • 한국군사과학기술학회지
    • /
    • 제26권3호
    • /
    • pp.252-261
    • /
    • 2023
  • Analysis of dynamic characteristics and flight vibration test for unmanned aerial vehicles was studied by using dummy test body. The FEM model for dummy test body was supplemented by results of modal and random vibration test. The free end boundary condition to simulate flight environments was made by test setup using bungee cable. Prior to the flight vibration test using a dual electric vibration exciters, the test procedure to calculate quantitative vibration level was studied by using military specification. The actual test was successfully done by using the analysis and pretest results. From the analysis results, it was possible to determine the feasibility of the test by predicting the excitation force of the flight vibration test and to get the response of any point which could not be measured by the test. The results of this study will much contribute to the Test and Evaluation of unmanned aerial vehicles.

Wideband and 2D vibration energy harvester using multiple magnetoelectric transducers

  • Yang, Jin;Yu, Qiangmo;Zhao, Jiangxin;Zhao, Nian;Wen, Yumei;Li, Ping
    • Smart Structures and Systems
    • /
    • 제16권4호
    • /
    • pp.579-591
    • /
    • 2015
  • This paper investigates a magnetoelectric (ME) vibration energy harvester that can scavenge energy in arbitrary directions in a plane as well as wide working bandwidth. In this harvester, a circular cross-section cantilever rod is adopted to extract the external vibration energy due to the capability of it's free end oscillating in arbitrary in-plane directions. And permanent magnets are fixed to the free end of the cantilever rod, causing it to experience a non-linear force as it moves with respect to stationary ME transducers and magnets. The magnetically coupled cantilever rod exhibits a nonlinear and two-mode motion, and responds to vibration over a much broader frequency range than a standard cantilever. The effects of the magnetic field distribution and the magnetic force on the harvester's voltage response are investigated with the aim to obtain the optimal vibration energy harvesting performances. A prototype harvester was fabricated and experimentally tested, and the experimental results verified that the harvester can extract energy from arbitrary in-plane directions, and had maximum bandwidth of 5.5 Hz, and output power of 0.13 mW at an acceleration of 0.6 g (with $g=9.8ms^{-2}$).

Differential transform method and numerical assembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and rotary inertias

  • Yesilce, Yusuf
    • Structural Engineering and Mechanics
    • /
    • 제53권3호
    • /
    • pp.537-573
    • /
    • 2015
  • Multiple-step beams carrying intermediate lumped masses with/without rotary inertias are widely used in engineering applications, but in the literature for free vibration analysis of such structural systems; Bernoulli-Euler Beam Theory (BEBT) without axial force effect is used. The literature regarding the free vibration analysis of Bernoulli-Euler single-span beams carrying a number of spring-mass systems, Bernoulli-Euler multiple-step and multi-span beams carrying multiple spring-mass systems and multiple point masses are plenty, but that of Timoshenko multiple-step beams carrying intermediate lumped masses and/or rotary inertias with axial force effect is fewer. The purpose of this paper is to utilize Numerical Assembly Technique (NAT) and Differential Transform Method (DTM) to determine the exact natural frequencies and mode shapes of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and/or rotary inertias. The model allows analyzing the influence of the shear and axial force effects, intermediate lumped masses and rotary inertias on the free vibration analysis of the multiple-step beams by using Timoshenko Beam Theory (TBT). At first, the coefficient matrices for the intermediate lumped mass with rotary inertia, the step change in cross-section, left-end support and right-end support of the multiple-step Timoshenko beam are derived from the analytical solution. After the derivation of the coefficient matrices, NAT is used to establish the overall coefficient matrix for the whole vibrating system. Finally, equating the overall coefficient matrix to zero one determines the natural frequencies of the vibrating system and substituting the corresponding values of integration constants into the related eigenfunctions one determines the associated mode shapes. After the analytical solution, an efficient and easy mathematical technique called DTM is used to solve the differential equations of the motion. The calculated natural frequencies of Timoshenko multiple-step beam carrying intermediate lumped masses and/or rotary inertias for the different values of axial force are given in tables. The first five mode shapes are presented in graphs. The effects of axial force, intermediate lumped masses and rotary inertias on the free vibration analysis of Timoshenko multiple-step beam are investigated.

원통형 영구자석 선형 동기전동기의 디텐트력 저감 (Detent Force Reduction in a Cylindrical Type PMLSM)

  • 이종진;연승환;고창섭
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권4호
    • /
    • pp.209-215
    • /
    • 2006
  • Recently Permanent Magnet Linear Synchronous Motors(PMLSMs) are widely used for many linear transportation applications. The PMLSM has many advantages such as simple structure, high speed and thrust. However, especially in short primary type PMLSM, there exists very large detent force, which makes the thrust force ripple, undesired vibration and noise. The detent force is composed of the Cogging force and the End force. The Cogging force comes from the interaction between the permanent magnets and interior teeth of the stator. And the End force acts on the exterior teeth of the stator by the permanent magnets. Usually End force is larger than Cogging force, so the detent force is drasically reduced only by reducing the End force. This paper shows the End force is minimized by optimizing the stator length and chamfering the shape of the exterior teeth of the stator.

고속 엔드밀 가공시 가속도계를 이용한 표면형상 시뮬레이션 (Simulation of surface profile using accelerometer in high speed end milling)

  • 이기용
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.321-325
    • /
    • 2000
  • To obtain precise surface and high productivity, high speed end milling has been studied recently. Though high speed end milling is explicitly effective for precision surface generation geometrically, tool deflection, chatter vibration and frequency characteristics of end milling system deteriorate the theoretical surface. In this study, simulation algorithm and programming method are suggested to simulate machined surface using acceleration signal in high speed end milling. This simulation is conducted by considering vibrational effect of spindle system which was not considered by other researchers. Between simulated results and experiment results, good agreements were obtained.

  • PDF

고속 엔드밀 가공시 가속도 신호를 고려한 가공표면의 시뮬레이션 (Simulation of Machined Surface Considering Acceleration Signal in High Speed End Milling)

  • 이기용;강명창;이득우;김정석
    • 대한기계학회논문집A
    • /
    • 제25권2호
    • /
    • pp.228-234
    • /
    • 2001
  • To obtain precise machined surface and high productivity in machining, high speed end milling has beed studied recently. Though high speed end milling is explicitly effective for precision surface generation geometrically, tool deflection, chatter vibration and frequency characteristics of end milling system deteriorate the theoretical surface. In this study, simulation algorithm and programming method are suggested to simulate machined surface using acceleration signal in high speed end milling. This simulation is conducted by considering vibrational effect of spindle system which was not considered by other investigators. Good agreements were obtained between simulated results and experimental results.

볼 엔드밀 헬릭스 각에 따른 절삭 특성 (Cutting Characteristics of Ball-end Mill with Different Helix Angle)

  • 조철용;류시형
    • 한국정밀공학회지
    • /
    • 제31권5호
    • /
    • pp.395-401
    • /
    • 2014
  • Development of five axis tool grinding machine and CAD/CAM systems increase tool design flexibility. In this research, investigated are cutting characteristics of ball-end mill with different helix angle. Special WC ball-end mills with $0^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$ helix angles are designed and used in various cutting tests. Machining performance according to helix angle variation is evaluated from cutting forces, surface roughness, tool wear, produced chip shape, and vibration characteristics. The ball-end mill with $10^{\circ}$ helix angle shows the best cutting performance due to appropriate chip load distribution and smooth chip flow. This research can be used for cutting edge geometry optimization and novel design of ball-end mill.

A new analytical approach for determination of flexural, axial and torsional natural frequencies of beams

  • Mohammadnejad, Mehrdad
    • Structural Engineering and Mechanics
    • /
    • 제55권3호
    • /
    • pp.655-674
    • /
    • 2015
  • In this paper, a new and simplified method is presented in which the natural frequencies of the uniform and non-uniform beams are calculated through simple mathematical relationships. The various vibration problems such as: Rayleigh beam under variable axial force, axial vibration of a bar with and without end discrete spring, torsional vibration of a bar with an attached mass moment of inertia, flexural vibration of the beam with laterally distributed elastic springs and also flexural vibration of the beam with effects of viscose damping are investigated. The governing differential equations are first obtained and then; according to a harmonic vibration, are converted into single variable equations in terms of location. Through repetitive integrations, the governing equations are converted into weak form integral equations. The mode shape functions of the vibration are approximated using a power series. Substitution of the power series into the integral equations results in a system of linear algebraic equations. The natural frequencies are determined by calculation of a non-trivial solution for system of equations. The efficiency and convergence rate of the current approach are investigated through comparison of the numerical results obtained with those obtained from other published references and results of available finite element software.

진동이 양생중인 콘크리트에 미치는 영향에 관한 연구 (An Experimental Study on the Effects of Early-Age Vibrations on the Properties of Concrete)

  • 오병환;송혜금;조재열
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.531-537
    • /
    • 1998
  • Recently, the pile driving or blasting works are increasingly done in many areas to perform large scale construction projects. The vibrations from these blasting works may affect the properties of concrete, especially young concrete. The purpose of present study is to explore the effects of vibration at early ages on the properties of concrete. To this end, comprehensive experimental study is conducted in the present study. The major test variables are peak particle velocity or vibration velocity and the age at vibration. The compressive strengths and bond strengths are measured for all the specimens at 28days after casting. The duration of vibration is fixed to 30 minutes for all cases. The results indicate that the strength increases for vibration velocity less than about 0.25cm/sec and decreases for vibration velocity larger than 0.5cm/sec. The effect of age at vibration is not pronounced and shows almost similar behavior for the age at vibration of 0 to 12 hours range. The present study provides some important guidelines to control the construction or vehicle vibrations for the concrete at very early ages.

  • PDF

자기계측 기능을 이용한 압전 빔의 잔류진동 제어 (Residual Vibration Suppression of a Piezoelectric Beam Using a Self-sensing Technology)

  • 남윤수;장후영;박종수
    • 한국정밀공학회지
    • /
    • 제24권3호
    • /
    • pp.67-75
    • /
    • 2007
  • This paper deals with a problem of vibration suppression of a piezoelectric beam using a self-sensing algorithm. Two methods, which are PPF(positive position feedback) and SRF(strain rate feedback), are considered to suppress a residual vibration of a piezoelectric beam developed during the step positioning of a beam end point. A self-sensing algorithm treated here is basically a strain rate estimator of a beam movement and is to be used for the closed loop control. The efficacy of the proposed idea is evaluated through experiments.