• Title/Summary/Keyword: End girder

Search Result 93, Processing Time 0.02 seconds

Parameters influencing seismic response of horizontally curved, steel, I-girder bridges

  • Linzell, Daniel G.;Nadakuditi, Venkata P.
    • Steel and Composite Structures
    • /
    • v.11 no.1
    • /
    • pp.21-38
    • /
    • 2011
  • This study examines the influence of curved, steel, I-girder bridge configuration on girder end reactions and cross frame member forces during seismic events. Simply-supported bridge finite element models were created and examined under seismic events mimicking what could be experienced in AASHTO Seismic Zone 2. Bridges were analyzed using practical ranges of: radius of curvature; girder and cross frame spacings; and lateral bracing configuration. Results from the study indicated that: (1) radius of curvature had the greatest influence on seismic response; (2) interior (lowest radius) girder reactions were heavily influenced by parameter variations and, in certain instances, uplift at their bearings could be a concern; (3) vertical excitation more heavily influenced bearing and cross frame seismic response; and (4) lateral bracing helped reduce seismic effects but using bracing along the entire span did not provide additional benefit over placing bracing only in bays adjacent to the supports.

Influence of track irregularities in high-speed Maglev transportation systems

  • Huang, Jing Yu;Wu, Zhe Wei;Shi, Jin;Gao, Yang;Wang, Dong-Zhou
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.571-582
    • /
    • 2018
  • Track irregularities of high-speed Maglev lines have significant influence on ride comfort. Their adjustment is of key importance in the daily maintenance of these lines. In this study, an adjustment method is proposed and track irregularities analysis is performed. This study considers two modules: an inspection module and a vehicle-guideway coupling vibration analysis module. In the inspection module, an inertial reference method is employed for field-measurements of the Shanghai high-speed Maglev demonstration line. Then, a partial filtering, integration method, resampling method, and designed elliptic filter are employed to analyze the detection data, which reveals the required track irregularities. In the analysis module, a vehicle-guideway interaction model and an electromagnetic interaction model were developed. The influence of the measured line irregularities is considered for the calculations of the electromagnetic force. Numerical integration method was employed for the calculations. Based on the actual field detection results and analysis using the numerical model, a threshold analysis method is developed. Several irregularities modalities with different girder end's deviations were considered in the simulations. The inspection results indicated that long-wavelength irregularities with larger girder end's deviations were the dominant irregularities. In addition, the threshold analysis of the girder end's deviation shows that irregularities that have a deviation amplitude larger than 6 mm and certain modalities (e.g., M- and N-shape) are unfavorable. These types of irregularities should be adjusted during the daily maintenance.

Evaluation of Shear Capacity on PC Girder-PC Beam Joint (PC 큰 보-PC 작은 보 접합부의 전단성능 평가)

  • Moon, Jeong Ho;Oh, Young Hun;Lim, Jae Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.166-174
    • /
    • 2011
  • The object of this study is to evaluate the structural shear capacity of the PC girder-PC beam joint. The dapped end of PC beam and the ledger of PC girder are usually designed to design load. If the end of PC beam can be designed with continuous end, the dapped end of PC beam and the ledger of PC girder do not need to resist to all loads except dead load and construction load. The experimental program was carried out with 7 specimens containing the variable factors as the anchored method of the hanger bar, design load, be or not exist of ledger bars. As a result, the continuity of the dapped end and the ledger were ensured their safety although the design load was only the dead load and the construction load. The shear critical section was expanded toward the effective depth d, the distance from the supported position of the beam. If the ledger is designed according to PCI Design Handbook, the structural system of the ledger is as to the cantilever slab system. But the ledger of this study is as to the 3 side fixed slab system. Therefore the design of the ledger by PCI Design Handbook will lead to highly conservative results.

Interface friction in the service load assessment of slab-on-girder bridge beams

  • Seracino, R.;Kerby-Eaton, S.E.;Oehlers, D.J.
    • Steel and Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.259-269
    • /
    • 2005
  • Many slab-on-girder bridges around the world are being assessed because they are approaching the end of their anticipated design lives or codes are permitting higher allowable loads. Current analytical techniques assume that the concrete and steel components act independently, typically requiring full-scale load testing to more accurately predict the remaining strength or endurance of the structure. However, many of the load tests carried out on these types of bridges would be unnecessary if the degree of interaction resulting from friction at the steel-concrete interface could be adequately modeled. Experimental testing confirmed that interface friction has a negligible effect on the flexural capacity of a slab-on-girder beam however, it also showed that interface friction is significant under serviceability loading. This has led to the development of an improved analytical technique which is presented in this paper and referred to as the slab-on-girder mixed analysis service load assessment approach.

Force transfer mechanism in positive moment continuity details for prestressed concrete girder bridges

  • Hossain, Tanvir;Okeil, Ayman M.
    • Computers and Concrete
    • /
    • v.14 no.2
    • /
    • pp.109-125
    • /
    • 2014
  • The force transfer mechanism in positive moment continuity details for prestressed concrete girder bridges is investigated in this paper using a three-dimensional detailed finite element model. Positive moment reinforcement in the form of hairpin bars as recommended by the National Cooperative Highway Research Program Report No 519 is incorporated in the model. The cold construction joint that develops at the interface between girder ends and continuity diaphragms is also simulated via contact elements. The model is then subjected to the positive moment and corresponding shear forces that would develop over the service life of the bridge. The stress distribution in the continuity diaphragm and the axial force distribution in the hairpin bars are presented. It was found that due to the asymmetric configuration of the hairpin bars, asymmetric stress distribution develops at the continuity diaphragm, which can be exacerbated by other asymmetric factors such as skewed bridge configurations. It was also observed that when the joint is subjected to a positive moment, the tensile force is transferred from the girder end to the continuity diaphragm only through the hairpin bars due to the lack of contact between the both members at the construction joint. As a result, the stress distribution at girder ends was found to be concentrated around the hairpin bars influence area, rather than be resisted by the entire girder composite section. Finally, the results are used to develop an approach for estimating the cracking moment capacity at girder ends based on a proposed effective moment of inertia.

Design of End Diaphragms in PSC Box Girder Bridges Using a Strut-and-Tie Model (스트럿-타이 모델을 이용한 PSC 박스거더 교량의 End Diaphragm의 설계 연구)

  • 이창훈;윤영수;이만섭;김병석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.961-966
    • /
    • 2003
  • In recent, the design of diaphragm which is representative disturbed region in PSC box girder bridge have been performed according to the empirical method or beam theory. But, these methods couldn't be described the behavior of the end diaphragm, and placed reinforcements accurately. As the compressive stress transferred by the web concentrated on the lower parts of diaphragm, it was demonstrated that the basic assumption of 2-D strut-and-tie model for the diaphragm that the compressive stress acts on the upper parts of the diaphragm is wrong. Meanwhile, in this research, after analyzing the variables of end diaphragm, the 2-D strut-and-tie models appropriate to each cases are proposed. And, the problems of 2-D strut-and-tie model were analyzed, so 3-D strut-and-tie model is proposed as well. There is no codes which include the demonstration of safety of 3-D strut-and-tie model. Hence, for nodes, the stresses at the elements which included the singular node in strut-and-tie model were investigated using the finite element analysis. And, the stress states of strut has one direction, so effective stresses were considered at the stage, dimensioning of the model. From the results, 3-D strut-and-tie model could predict the behavior of end diaphragm accurately, and design of reinforcement could be performed economically.

  • PDF

Determination of minimum depth of prestressed concrete I-Girder bridge for different design truck

  • Atmaca, Barbaros
    • Computers and Concrete
    • /
    • v.24 no.4
    • /
    • pp.303-311
    • /
    • 2019
  • The depth of superstructure is the summation of the height of girders and the thickness of the deck floor. In this study, it is aim to determine the maximum span length of girders and minimum depth of the superstructure of prestressed concrete I-girder bridge. For this purpose the superstructure of the bridge with the width of 10m and the thickness of the deck floor of 0.175m, which the girders length was changed by two meter increments between 15m and 35m, was taken into account. Twelve different girders with heights of 60, 75, 90, 100, 110, 120, 130, 140, 150, 160, 170 and 180 cm, which are frequently used in Turkey, were chosen as girder type. The analyses of the superstructure of prestressed concrete I girder bridge was conducted with I-CAD software. In the analyses AASHTO LRFD (2012) conditions were taken into account a great extent. The dead loads of the structural and non-structural elements forming the bridge superstructure, prestressing force, standard truck load, equivalent lane load and pedestrian load were taken into consideration. HL93, design truck of AASHTO and also H30S24 design truck of Turkish Code were selected as vehicular live load. The allowable concrete stress limit, the number of prestressed strands, the number of debonded strands and the deflection parameters obtained from analyses were compared with the limit values found in AASHTO LRFD (2012) to determine the suitability of the girders. At the end of the study maximum span length of girders and equation using for calculation for minimum depth of the superstructure of prestressed concrete I-girder bridge were proposed.

A Case Study on Continuous Prestressed Concrete Composite Girder with Cross-beam Anchorage System (가로보를 정착구조로 하는 연속화 PSC 합성거더 시공사례)

  • Park, Hyun-Myo;Huh, Young;Kim, Yun-Hwan;Kim, Seok-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.451-452
    • /
    • 2010
  • Prestressed concrete I girder bridge has been one of the most widely used bridges in the world because of its excellent construction feasibility, economic efficiency, serviceability, and safety. But in Korea, the PSC bridge has not been utilized for long span because of high girder height in its standard design. Thus, the results confirm that it is possible to applicate the continuous PSC girder with end cross beam anchorage system using multi-stage prestressing technique.

  • PDF

Experimental Study on Structural Performance of End-reinforced Steel-beam system(Eco-girder) (단부 보강한 합성보(에코거더)시스템의 구조성능에 관한 실험적 연구)

  • Chae, Heung-Suk;Ryoo, Jae-Yong;Chung, Kyung-Soo;Moon, Young-Min;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.6
    • /
    • pp.533-541
    • /
    • 2010
  • H-shaped beams, which are constructed between columns, are used widely as slaves in steel structures. The bending moments that occur on both ends of an H-shaped beam, however, are about twice the bending moment that occurs at the center of the H-shaped beam. Because such beam is designed with maximum bending moment, it is deeper and has smaller spaces. To improve these features, if both ends of an H-shaped beam that have maximum bending moments are merely reinforced, the beams could be designed by the bending moment at the center of the H-shaped beam. To analyze the structural performance of the proposed end-reinforced beams (eco-girders). Four specimens were prepared with the following parameters: end-reinforced steel plate, reinforced bars, and reinforced studs and experimental tests of the specimens were performed.

A Study on Integrated Cross Beam Improvement of Through Railway Plate Girder Bridge Support (철도 하로판형교 지점부의 일체형 가로보 개선에 관한 연구)

  • Ha, Yun-Soo;Kim, Doo-Hwan;Song, Kwan-Kwon;Kim, Seong-Pil;Lee, Seong-Geun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.114-120
    • /
    • 2018
  • Recently, the plate girder bridge is offen designed a temporary bridge for underground roadway construction have not interrupt railroad operation. The integral support plate girder bridge which have longitudinal girder and cross-girder is improved workability and reduction cost and of construction time. The cross beam of the integral support plate girder bridge has a normal box shape to distribute load on the main girde to end both side girder. In this study, On the change to the web distance of the cross box shows characteristics of related to the stresses and displacements on the flange and web plate. Afterward, the various analysis contributed to the safety improvement of crossbeam of the integral support crossbeam plate girder bridge.