• Title/Summary/Keyword: End Milling

Search Result 438, Processing Time 0.024 seconds

Cutting Characteristics of Micro grooving by Cutting Environments in High Speed Machining using Ball End Mill (미세홈 고속가공시 절삭유제 공급방식에 따른 가공성 평가)

  • 배정철;정연행;강명창;이득우;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.172-175
    • /
    • 2002
  • High speed machining is one of the most effective technologies to improve productivity. It can give great advantage for manufacture of die and Moulds. However, when machining of micro groove in high speed machining a severely thermal damage was generated on workpiece and cutting tool. Generally, the cutting fluid is used to improve penetration. lubrication. and cooling effect. In order to rise the performance of lubrication. it contains extreme pressure agents (Cl, S, P). But the environment of work room go bad by those additive. Therefore, the compressed chilly air with oil mist system was developed to replace the conventional cutting fluid system. This paper carried out the tests to evaluate the machinability by the cutting environment in high speed micro groove machining of NAK80 (HrC40). Compressed chilly air with oil mist was ejected on the contact area between cutting edge and workpiece. The effect of this developed compressed chilly air with oil mist system was evaluated in terms of tool life. The results showed that the tool lift of carbide tool coated TiAlN with compressed chilly air mist cooling was much longer than that of the dry and flood coolant when cutting the material.

  • PDF

Study of the thermal deflection error and the deflection error induced by the cutting force (절삭공구의 열변형 오차 및 절삭력 변형 오차에 관한 연구)

  • Oh, Myung-Seok;Yoon, In-Jun;Baek, Dae-Kyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.4
    • /
    • pp.373-378
    • /
    • 2002
  • This paper presents a method to predict tool deflection induced by the thermal distribution and the cutting force using FEM in milling operation. The thermal distribution of cutting tool was predicted using FEM after measuring the temperature of the end of tool and of the tool holder. The thermal deflection of cutting tool was predicted using FEM as well. The tool deflection induced by the cutting force was analyzed with the solid model of cutting tool. An end mill tool caused most of tool deflection comparing to tool holder. Most of thermal deflection came from Z-direction and most of tool deflection induced by the cutting force came from X and Y direction. Precision cutting will be accomplished when tool locations are generated considering the thermal deflection of cutting tool and the tool deflection induced by the cutting force in CAD/CAM.

  • PDF

A Study on the Development of a Step Cutter with Hybrid Process of Drilling and Boring (드릴, 보링 공정복합형 스텝 커터의 개발)

  • Hwang, Jong Dae;Heo, Yun Nyoung;Oh, Ji Young;Jung, Yoon Gyo;Cho, Sung Lim
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.30-35
    • /
    • 2008
  • As demands for being economical, precise drilling process is on the increase. Therefore, the objective of this study is to develop a step cutter that can be controllable through micro dimension and can be changed from separate manufacturing processes of drilling and boring into an integrated one. In order to attain this object the step cutter is designed with a 3D geometric modeling and the design could be modified easily by using parametric modeling methodology. Also, collision is not occurred during manufacturing process because of cutting simulation. The step cutter is assembled by parts made up of 5-axis machining and sintering. Validation tests are accomplished. They show that developed cutter has characteristics such as reduction of machining time as well as the good surface roughness of the machined hole. Indeed, reliability could be obtained from a durability test.

  • PDF

Pencil Curve Tracing via Virtual Digitizing (가상 측정을 통한 펜슬곡선 추출)

  • 박정환;김보현;최병규
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.4
    • /
    • pp.253-266
    • /
    • 1997
  • Pencil-curve machining, which is a single-pass ball-end milling along a concave edge on adie surface, is widely employed in die-surface machining. The cutter-path used for pencil-curve machining, which is the trajectory of the “ball-center point” of a ball-endmill sliding along a concave-edge region on the die surface, is called pencil-curve. Presented in the paper is a pencil-curve tracing algorithm in which “concave-type” sharp edges are computed from a “virtually digitized” model of the tool-envelope surface. The resulting “initial” pencil-cures are then refuted by applying a series of fairing operations. illustrative examples and methods for enhancing accuracy are also presented. The proposed pencil-curve tracing algorithm has been successfully implemented in a commercial CAM system specialized in die-machining and in the CAD/CAM system CATIA.

  • PDF

Machining Characteristics of the Hybrid Machining System Comprising of EDM and Endmilling (방전과 엔드밀링이 결합된 하이브리드 공정의 가공특성)

  • Kim, Min-Yeop;Li, Chang-Ping;Kim, Jung-Hyun;Ko, Tae Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.86-92
    • /
    • 2016
  • Mechanical milling, in association with electrical discharge machining (EDM) for hybrid machining, is presented in this paper. An end mill cutting tool, an electrode of the EDM, was used for the system. That means that some parts were cut by the mechanical cutting process and others by the EDM. The possibility of combining both processes was simulated with the cutting simulation software. In addition, the machining reality was verified by measuring the electrical signal from the EDM power supply, which was measured in time and frequency domains. From this initial research, the hybrid machining system proposed in this paper appears to be well suited for difficult to cut material processing.

Simultaneous Control of Cutting Force and Position Using Two Degree-of- Freedom Controller in CNC Ball-end Milling Process (2자유도 제어기를 이용한 CNC볼엔드밀링 공정에서 절삭력과 위치의 동시제어)

  • 양호석;심영복;이건복
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.536-542
    • /
    • 2002
  • There are two important variables in machining process control, which are feed and cutting speed. In this work, a two degree-of-freedom controller is designed and implemented to achieve on-line cutting force control and position control based on the modelling of cutting process dynamics which are established through step response test. Two schemes are proposed and implemented. The first is feed control under the constant spindle speed and spindle speed control under the constant feed speed. The second is a simultaneous control of feed and spindle speed. The last performs a position control under the constant cutting force. Those are confirmed to work properly. Especially the latter shows a faster response.

  • PDF

A Study on the Experimental Compensation of Thermal Deformation in Machine Tools (공작기계 열변형의 실험적 보정에 관한 연구)

  • 윤인준;류한선;고태조;김희술
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.16-23
    • /
    • 2004
  • Thermally induced errors of machine tools have been recognized as one of the most important issues in precision machining. This is probably the most formidable obstacle to obtain high level of machining accuracy. To this regard, the experimental compensation methodologies such as software-based method or origin shift of machine tool axes have been suggested. In this research, to cope with thermal deformation, a model based correction was carried out with the function of an external machine coordinate shift. Models with multi-linear regression or neural network were investigated to selected a good one for thermal compensation. Consequently, multi-linear regression model combined with origin shift was verified good enough form the machining of dot matrices of plate with ball end milling.

Remaining volume after smoothing(RVAS) variation according to runout (런아웃의 양에 따른 잔류 부피의 변화)

  • Kim M.T.;Lee H.S.;Je S.U.;Chu C.N.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1248-1252
    • /
    • 2005
  • Mold-manufacturing process consists of machining and finishing process that are strongly related in each other. But there are few studies about mold-manufacturing process to control those two processes simultaneously. Especially, runout distorts the machined surface from expected so it changes the finishing process and mold-manufacturing time. In this work, basic analyses and experiments were carried out to study RVAS variation according to runout in HSM. To perform those analyses, firstly surface generation analysis was done including runout in ball end milling and then the RVAS that could relate machining and finishing process was proposed. And the optimal finishing process in HSM according to RVAS was also proposed. Through experiment runout occurrence and above analyses were verified.

  • PDF

Cutting Force Control Using A Two Degree-of-Freedom Controller in Ball-end Milling Processes (CNC 볼엔드밀링 공정에서 2자유도 제어기를 이용한 절삭력 제어)

  • 양호석;심영복;이건복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.219-224
    • /
    • 2002
  • There are two important variables in machining process control, which are feed and cutting speed. In this work, a two degree-of-freedom controller is designed and implemented to achieve on-line cutting force control based on the modelling of cutting process dynamics which are established through step response test. Two schemes are proposed and implemented. The first is feed control under the constant spindle speed and spindle speed control under the constant fled speed. The second is a simultaneous control of feed and spindle speed. Those are confirmed to work properly. Especially the latter shows a faster response and we'll be evaluated to pare away workpiece by simultaneous control of position and cutting farce sooner or later.

  • PDF

접촉식 측정시스템에 의한 공작물의 자동인식 및 오차보상

  • 신동수;정성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.11a
    • /
    • pp.121-125
    • /
    • 1991
  • In order to minimize fixing error of workpieces, prismatic and cylindrical types. Modification Rule by Indexing Table and Modification Rule by NC Program are developed for machining centers by using touch trigger probes. The Modification Rule by Indexing Table means the alignment of workpiece to NC program through degree of freedoms of indexing table. The Modification Rule by NC Program is the alignment of NC program to workpiece set-up condition via the generation of NC program. A postprocessing module is also developed for generating NC-part Program (User Macro) to compensate for Machining errors in end milling and boring processes. Developed methods are verified by experiments.

  • PDF