• Title/Summary/Keyword: End Force

Search Result 1,239, Processing Time 0.03 seconds

A combination method of the theory and experiment in determination of cutting force coefficients in ball-end mill processes

  • Kao, Yung-Chou;Nguyen, Nhu-Tung;Chen, Mau-Sheng;Huang, Shyh-Chour
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.4
    • /
    • pp.233-247
    • /
    • 2015
  • In this paper, the cutting force calculation of ball-end mill processing was modeled mathematically. All derivations of cutting forces were directly based on the tangential, radial, and axial cutting force components. In the developed mathematical model of cutting forces, the relationship of average cutting force and the feed per flute was characterized as a linear function. The cutting force coefficient model was formulated by a function of average cutting force and other parameters such as cutter geometry, cutting conditions, and so on. An experimental method was proposed based on the stable milling condition to estimate the cutting force coefficients for ball-end mill. This method could be applied for each pair of tool and workpiece. The developed cutting force model has been successfully verified experimentally with very promising results.

End-milling Force Estimation by Fractal Interpolation (프랙탈 보간에 의한 엔드밀링 절삭력 예측)

  • Jeong, Jin-Seok;Chin, Do-Hun;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.1
    • /
    • pp.7-12
    • /
    • 2006
  • Recently, the fractal interpolation methods have been widely introduced and used to estimate and analyze various theoretical and experimental data. Because of the chaotic behaviors of dynamic cutting force data, some method for end-milling force analysis must be used. The fractal analysis used in this paper is fractal linear interpolation and fractal dimension. Also, several methods for computing fractal dimensions have been used in which the fractal dimension of the typical dynamic end-milling force was calculated according to number of data points that are generally lower than 200 data points sampled. This fractal analysis shows a possible prediction of end-milling force that has some dynamic chatter property or stationary property in endmilling operation.

  • PDF

A Study on the Prediction of End Milling Cutting Force by Tensile Test (인장실험을 통한 엔드밀링 작업에서의 절삭력 예측에 관한 연구)

  • 신근하
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.257-262
    • /
    • 1999
  • On End Milling Process predict the cutting force is important. Dynamics the shear stress is the main parameter influencing the energy requirement in machining. It is well known that a nonzero force is obtained when cutting forces measured at different feed rates but otherwise constant cutting conditions are extrapolated to zero feed rate. In this paper, the cutting force measured in end-milling is compared with the simulated force models. The result show that stress measured in cutting is consistent with that stresses predicted.

  • PDF

A Study on End-effector Friction of Constrained Spatial Flexible Manipulator (구속 받는 3차원 유연 매니퓰레이터 선단의 마찰에 관한 연구)

  • Kim, Jin-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.449-454
    • /
    • 2010
  • The force control of a constrained flexible manipulators has been one of the major research topics. However, a little effort has been devoted for the relation between friction force and elastic deflection of end-effector for a constrained flexible manipulator. So, the aim of this paper is to clarify the friction mechanism of a constrained spatial multi-link flexible manipulator by changing the material and connected method of end-effector. In this study, a concise hybrid position/force control scheme is applied to the control of a flexible manipulator, and the experimental results for the constrained vertical motion and constrained horizontal motion is presented. Finally a comparison between these results are presented to show the reduction of vibration of link and friction force.

Continuous Contact Force Model for Low-Speed Rear-End Vehicle Impacts (차량 저속 추돌의 연속 접촉력 모델)

  • Han, In-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.181-191
    • /
    • 2006
  • The most common kind of vehicular accident is the low-speed rear-end impact that result in high portion of insurance claims and Whiplash Associated Disorders(WAD). The low-speed collisions have specific characteristics that differ from high speed collisions and must be treated differently This paper presents a simple continuous contact force model for the low-speed rear-end impact to simulate the accelerations, velocities and the contact force as functions of time. A smoothed Coulomb friction force is used to represent the effect of braking, which was found to be significant in simulating low-speed rear end impact. The intervehicular contact force is modeled using nonlinear damping and spring elements with coefficients and exponents. This paper presents how to estimate analytically stiffness and damping coefficients. The exponent of the nonlinear contact force model was determined to match the overall acceleration pulse shape and magnitude. The model can be used to determine ${\Delta}Vs$ and peak accelerations for the purpose of accident reconstruction and for injury biomechanics studies.

A Study on the Cutting Force and Machining Error on the Inclined Plane in Ball-end Milling (볼엔드밀에 의한 경사면 가공시 절삭력 및 가공 오차에 관한 연구)

  • Doo, Seung;Hong, Joo-Won;Suh, Nam-Sub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.112-119
    • /
    • 2001
  • In modern manufacturing, many products that have geometrically complicated features, including three-dimensional sculptured surfaces, are being designed and produced to meet various sophisticated functional specifications. The cutting force is required not only for the design of machine and cutting tools, but also for the determination of the cutting conditions for the various machining operations. The ball-end mill is deflected by the cutting force and, the tool deflection is one of the main reasons of the machining errors on a free-form surface. Hence, The cutting force generated in the ball-end milling is the most important property of the machining. The purpose of this study is to find the characteristics of the cutting force in inclined plane and the resultant machining errors in the ball-end milling process. Although the depth of cut is constant in the inclined plane, the cutting force area varies due to the hemisphere of the ball-end mill.

  • PDF

Phase Current Magnitude Variation Method to Reduce End-Effect Force of PM Linear Synchronous Motor

  • Kim, Min-Jae;Lim, Jae-Won;Yim, Woo-Gyong;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.793-798
    • /
    • 2011
  • Numerous methods are available for reducing the end-effect force of linear machines. Majority of these methods focus on redesigning the poles or slots. However, these methods require additional manufacturing cost and decrease the power density. The current paper introduces another approach to reduce the end-effect force. The new approach is a method of tuning the input phase current magnitudes individually. According to the proposed method, reduction of the end-effect force could be achieved without redesigning the poles/slots or attaching auxiliary poles/slots. The proposed method is especially applicable when the target motor is very expensive or will be used for a special mission, such as hauling army vehicles equipped with three single-phase inverters. The validity of the suggested method was exemplified by the finite element method with three-phase permanent-magnet linear synchronous motor.

Prediction of Cutting Forces and Estimation of Size Effects in End Milling Operations by Determining Instantaneous Cutting Force Constants (엔드 밀링 공정에서 순간 절삭력 계수 결정을 통한 절삭력 예측 및 크기효과 평가)

  • Kim, Hong Seok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.1003-1009
    • /
    • 2013
  • This paper presents a simple procedure to obtain the instantaneous cutting force constants needed to predict milling forces. Cutting force data measured in a series of slot milling tests were used to determine the cutting force constants at different feed rates. The values of the cutting force constants were determined directly at the tool rotation angle that maximized the uncut chip thickness. Then, the instantaneous cutting force constant was obtained as a function of the instantaneous uncut chip thickness. This approach can greatly enhance the accuracy of the mechanistic cutting force model for end milling. In addition, the influences of several cutting parameters on the cutting forces, such as the tool helix angle and axial depth of cut, were discussed.

A study on the reduction of detent force by end-effect in moving magnet type PMLSM (가동 코일형 PMLSM의 단부효과에 의한 디텐트력 저감에 관한 연구)

  • Jeong, Su-Kwon;Lee, Seung-Hoon;Lee, Dong-Yeup;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.115-117
    • /
    • 2006
  • The detent force by end-effect has a bad influence on moving coil type Permanent Magnet Linear Synchronous Motor(PMLSM). So, the reduction of detent force by end-effect is especially required for improvement of thrust characteristics. In this paper, in order to reduce detent force by end-effect the auxiliary teeth is installed at the end part of mover and it is optimized by using neural network.

  • PDF

Detent force minimization caused by end effect of moving magnet type Slotless PMLSM (Moving magnet type Slotless PMLSM의 end effect에 의한 detent force 최소화)

  • Kim, Mi-Yong;Ha, Tae-Wook;Jung, Chun-Gil;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.33-35
    • /
    • 2003
  • This paper proposes inserted core type of slotless Permanent Magnet Linear Synchronous Motor(PMLSM) to improve its low thrust density. However, by inserting the core between windings of each phase, detent force is generated. Furthermore, linear motors have the feature of structurally limited length. So, it causes the end-effect in actual operation. So, this paper applies the neural network to this model to minimize detent force and maximize thrust. Also, sub-poles used the to the end parts of the mover for compensating the end-effect.

  • PDF