• Title/Summary/Keyword: End Force

Search Result 1,246, Processing Time 0.029 seconds

An Analysis of the Cutting Force for Peripheral End-milling Considering Run-out (런아웃을 고려한 측면 엔드밀 가공의 절삭력 분석)

  • Kim, Jong-Do;Yoon, Moon-Chul;Kim, Byung-Tak
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.7-12
    • /
    • 2012
  • The cutting force for peripheral end-milling considering run-out property was estimated and its result was compared with that of measured one. An experimental coefficient modelling was used for the formulation of theoretical end-milling force by considering the specific cutting force coefficient. Also, the specific cutting force, that is the multiplication of specific cutting force coefficient and uncut chip thickness, was used for the prediction of end-milling force. The end-milling force mechanics with run-out was presented for the estimation of theoretical force in peripheral end-milling by considering the geometric shape of the workpiece part. As a result, the estimated end-milling force shows a good consistency with the measured one. And it can be used for the prediction of force history in end-milling with run-out which incurs different start and exit immersion angle in entering and exiting condition.

Detent Force Reduction in a Cylindrical Type PMLSM (원통형 영구자석 선형 동기전동기의 디텐트력 저감)

  • Lee, Jong-Jin;Youn, Sung-Whan;Koh, Chang-Seop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.4
    • /
    • pp.209-215
    • /
    • 2006
  • Recently Permanent Magnet Linear Synchronous Motors(PMLSMs) are widely used for many linear transportation applications. The PMLSM has many advantages such as simple structure, high speed and thrust. However, especially in short primary type PMLSM, there exists very large detent force, which makes the thrust force ripple, undesired vibration and noise. The detent force is composed of the Cogging force and the End force. The Cogging force comes from the interaction between the permanent magnets and interior teeth of the stator. And the End force acts on the exterior teeth of the stator by the permanent magnets. Usually End force is larger than Cogging force, so the detent force is drasically reduced only by reducing the End force. This paper shows the End force is minimized by optimizing the stator length and chamfering the shape of the exterior teeth of the stator.

Dynamic and Static End-milling Force Analysis According to Workpiece Geometry (가공물 형상에 따른 동적 및 정적 절삭력 성분 분석법)

  • Yang, Jae-Yong;Yoon, Moon-Chul;Kim, Byung-Tak
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.13-19
    • /
    • 2012
  • There are many dynamic properties in measured end-milling force. So, it is difficult to predict the real static property of end-milling force. Also the behavior of end-milling force is very complex to predict with the measured one. To extract the static property from measured force, it must be filtered and its problem is closely related to a de-noising one. Also this paper presents alternative de-noising method of end-milling force using wavelet filter bank, based on the wavelet transform and its inverse one. In this paper, by comparing the measured force and its wavelet filtered one, the fundamental end-milling force property after wavelet transform is well reviewed and analyzed. This result of wavelet filtering with filter bank shows the static force of end-milling which has severe dynamic properties occurring in entry and exit state of edge emersion into the workpiece.

Dynamic Filtering of End-milling Force Using Wavelet Filter Bank (웨이블렛 필터뱅크를 이용한 동적 엔드밀 절삭력 필터링)

  • Cho, Hee-Geun;Chin, Do-Hun;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.4
    • /
    • pp.381-387
    • /
    • 2009
  • The end-milling force behaviour is very complex and it is related to a de-noising phenomenon, so it is very difficult to detect and diagnose this static cutting force phenomenon. This paper presents a new method of filtering of end-milling force in end-milling operation using filter bank technique, based on the wavelet transform. In this paper by comparing the history of end-milling force using wavelet filtering the fundamental end-milling property of the wavelet transform is well reviewed and analyzed. This result of wavelet transform using filter bank shows the possible static prediction of end-milling force with severe dynamic properties such as chatter in end-milling operation.

  • PDF

The Parameter Study of Serviceability Review of End Track on Railway Bridge installed Concrete Slab Track (콘크리트궤도 부설 교량의 단부 사용성 검토를 위한 매개변수 연구)

  • Sung, Deok-Yong;Kim, Young-Ha;Park, Yong-Gul;Kim, Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.117-124
    • /
    • 2008
  • Construction of concrete slab track is trending to increase gradually in national and international for reduction in track maintenance cost and secure of ride comfort. However, in case of railway bridge installed concrete slab track, the serviceability review of end deck should be performed for reducing the maintenance cost of track. The serviceability review of track contains that the compression force which is occurred on fastener of end bridge should be smaller than the compression force causing the deformation limit of elastic pad and the uplift force which is occurred on fastener of end abutment should be smaller than initial fastening force. Therefore, this study calculated the deflection and end rotation of the railway bridge according to the span length and stiffness of railway bridge and estimated the compression force and uplift force which are occurred on the track of end bridge using the finite element method. This study indicated the several diagrams that are contained the correlation between the behaviour of the track and the behaviour of the railway bridge. As a result, to reduce the end rotation of the railway bridge is very efficient to increase the height of railway deck.

  • PDF

Cutting Force Modelling in End-milling Considering Runout (런아웃을 고려한 엔드밀링의 절삭력 모델링)

  • Cho, Hee-Geon;Kim, Jong-Do;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.225-231
    • /
    • 2011
  • In this paper, a new end-milling force modelling technique was suggested by considering runout, and its result was compared with real measured force. The specific cutting force is the multiplication of cutting force coefficient and uncut chip thickness. This parameter was used for experimental modelling and prediction of theoretical force. These coefficients, which can be obtained by fitting measured average forces in several conditions, were used for the formulation of theoretical force. The mechanism of end-milling force with runout was developed in this research and its result was verified by comparing the fluctuating theoretical force and its measured one. The fluctuation of force was incurred by a geometric shape of workpiece and its runout in holding. The result of suggested force considering runout shows a good consistency with measured one. So this modelling method can be used effectively for a prediction of end-milling force with runout effect.

An analysis of cutting force according to specific force coefficients (비절삭저항 상수 변화에 따른 절삭력 분석)

  • Kim, Jong-Do;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.108-116
    • /
    • 2014
  • Considering the run-out effect and cutting force coefficients, the cutting force profile of half immersion end-milling was analyzed in detail. The effects of three specific cutting-force coefficients and three edge-force coefficients are verified. Through a detailed investigation, it is proved that the radial cutting force coefficients and are the major factors which increase the cutting forces Fx and Fy in end-milling. However, the axial cutting force coefficients have no influence on the force Fx and Fy changes in end-milling. Also, the analyzed end-milling force model shows good consistency with the actual measured force with regard to Fx and Fy. Thus, this model can be used for the prediction of the force history in end-milling with run-out, and it incurs a different force history with different start and exit immersion angles as well as holding effects.

A Study on the Reduction of Detent Force caused by End-Effect for Moving Coil Type PMLSM Using Auxiliary-teeth (보조치를 이용한 가동 코일형 PMLSM의 단부효과에 의한 Detent Force 저감에 관한 연구)

  • Jeong, Su-Kwon;Zhou, Jian-Pei;Lee, Dong-Yeup;Kim, Gyu-Tak
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.9
    • /
    • pp.459-464
    • /
    • 2006
  • The detent force by end-effect has an undesired influence on moving coil type Permanent Magnet Linear Synchronous Motor(PMLSM). So, the reduction of detent force by end-effect is especially required for the improvement of thrust characteristics. In this paper, in order to reduce detent force by end-effect, the auxiliary-teeth is installed at the end part of mover. It is also analyzed by Finite Element Analysis(FEA) and optimized by using neural network. By comparison, the detent force is reduced about 41.4[%] comparing to that of basic model.

Cutting Force Prediction in End Milling of STS 304 Considering Tool Wear (STS 304 엔드밀 가공시 공구마멸을 고려한 절삭력 예측)

  • Kim, Tae-Young;Jeong, Eun-Cheol;Shin, Hyung-Gon;Oh, Sung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.46-53
    • /
    • 1999
  • Cutting force characteristics is closely related with tool wear on the end milling. And it is found that the tool wear can be properly obtained by observation through the tool-maker's microscope when STS 304 is cut using an end mill. The relationship between the tool wear and the cutting force is established based on data obtained from a series of experiments. A cutting force model can be derived from basic cutting force model using parasitic force components of this tool wear. The results of th simulation using the cutting force model proposed in this paper were verified experimentally and a good agreement was partly obtained. The proposed model is capable of predicting increased cutting force due to tool wear.

  • PDF

Prediction of Cutting Force and Machinig Error in the Ball-end Milling Process (공구변형을 고려한 볼엔드밀의 절삭력과 가공오차 예측)

  • 조필주;김규만;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.1003-1008
    • /
    • 1997
  • In this paper, the prediction of cutting force and tool deflection in the ball-end milling process are studied. Identifying various cutting region using Z-map, cutting force in the ball-end milling process can be predicted. Cutting force deflects the tool and the tool deflection changes the cutting force. Tool deflection is included in the cutting force prediction. Tool deflecition also causes machining error of the machined surface. A series of experiments were performed to verify the simulated cutting force and machining error.

  • PDF