• Title/Summary/Keyword: Encryption of multiple images

Search Result 13, Processing Time 0.017 seconds

Design of image encryption system using multiple chaotic maps (다중 카오스 사상을 이용한 영상 암호시스템 설계)

  • 이성우;신재호
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.4
    • /
    • pp.183-194
    • /
    • 2004
  • The proliferation of the Internet and the rapid progress of wire/wireless communication technology makes security of digital images more and more important since the exchanges of digital images occur more and more frequently. And as the tight relationship between chaos theory and cryptography, many researches for development of new encryption systems based on chaotic maps have been widely progressed recently. In this paper, we propose a digital image encryption system based on both one-dimensional PLCM(Piecewise Linear Chaotic Map) and two-dimensional baker map. This proposed system is a product cipher that contains a perturbance-based chaotic stream cipher based on ID PLCM and a chaotic block cipher based on 2D baker map and is very high secure and easily implementable cipher having both a good confusion property and a good diffusion property. And with test results, we showed this system is very secure against statistical attacks.

Image Watermark Method Using Multiple Decoding Keys (다중 복호화 키들을 이용한 영상 워터마크 방법)

  • Lee, Hyung-Seok;Seo, Dong-Hoan;Cho, Kyu-Bo
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.4
    • /
    • pp.262-269
    • /
    • 2008
  • In this paper, we propose an image watermark method using multiple decoding keys. The advantages of this method are that the multiple original images are reconstructed by using multiple decoding keys in the same watermark image, and that the quality of reconstructed images is clearly enhanced based on the idea of Walsh code without any side lobe components in the decoding process. The zero-padded original images, multiplied with random-phase pattern to each other, are Fourier transformed. Encoded images are then obtained by taking the real-valued data from these Fourier transformed images. The embedding images are obtained by the product of independent Walsh codes, and these spreaded phase-encoded images which are multiplied with new random-phase images. Also we obtain the decoding keys by multiplying these random-phase images with the same Walsh code images used in the embedding images. A watermark image is then made from the linear superposition of the weighted embedding images and a cover image, which is multiplied with a new independent Walsh code. The original image is simply reconstructed by the inverse-Fourier transform of the despreaded image of the multiplication between the watermark image and the decoding key. Computer simulations demonstrate the efficiency of the proposed watermark method with multiple decoding keys and a good robustness to the external attacks such as cropping and compression.

A Secure Method for Color Image Steganography using Gray-Level Modification and Multi-level Encryption

  • Muhammad, Khan;Ahmad, Jamil;Farman, Haleem;Jan, Zahoor;Sajjad, Muhammad;Baik, Sung Wook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1938-1962
    • /
    • 2015
  • Security of information during transmission is a major issue in this modern era. All of the communicating bodies want confidentiality, integrity, and authenticity of their secret information. Researchers have presented various schemes to cope with these Internet security issues. In this context, both steganography and cryptography can be used effectively. However, major limitation in the existing steganographic methods is the low-quality output stego images, which consequently results in the lack of security. To cope with these issues, we present an efficient method for RGB images based on gray level modification (GLM) and multi-level encryption (MLE). The secret key and secret data is encrypted using MLE algorithm before mapping it to the grey-levels of the cover image. Then, a transposition function is applied on cover image prior to data hiding. The usage of transpose, secret key, MLE, and GLM adds four different levels of security to the proposed algorithm, making it very difficult for a malicious user to extract the original secret information. The proposed method is evaluated both quantitatively and qualitatively. The experimental results, compared with several state-of-the-art algorithms, show that the proposed algorithm not only enhances the quality of stego images but also provides multiple levels of security, which can significantly misguide image steganalysis and makes the attack on this algorithm more challenging.