• Title/Summary/Keyword: Encoding Schemes

Search Result 83, Processing Time 0.031 seconds

Optimal Rate-Distortion base packet scheduling for multimedia streaming (멀티미디어 스트리밍을 위한 최소 왜곡 패킷 스케줄링 기법 연구)

  • Chang, In-Gwang;Won, You-Jip
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.295-297
    • /
    • 2004
  • In this paper, we explore the streaming environment which adopts the MPEG-4 FGS(Fine Granualarity Scalability) encoding schemes. We investigate the server and client structure to fine the bottleneck of streaming system. After the structures, we propose a novel packet scheduling algorithm which enhances user perceptable playback quality. Experimental results show the performance enhancement of our algorithm, and system require less resources.

  • PDF

A Comparative Performance Analysis of STBC-OFDM Systems Under Cellular Mobile Environments (셀룰러 이동통신 환경에서 STBC-OFDM 시스템의 성능 비교, 분석)

  • Jung Ho-Chul;Chang Eun-Kyoung;Park Hyung-Rae;Jang Eun-Young;Kim Chang-Ju
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.3 s.345
    • /
    • pp.18-26
    • /
    • 2006
  • In this paper, we compare the performance of three representative STBC schemes, Alamouti's, Tarokh's and quasi-orthogonal schemes under cellular mobile environments when they are applied to the OFDM system. We first study the encoding algorithms of the STBC schemes along with the development of adequate demodulation algorithms. The OFDM parameters are selected by considering the Wibro system and adequate modulation schemes are assigned for each STBC schemes according to the transmission rate from 2bps/Hz to 4bps/Hz. The STBC-OFDM systems employ Walsh orthogonal codes covered along the frequency domain in order to estimate the channel information for different transmit antennas. We finally compare the performance of the STBC-OFDM systems according to the transmission rate through computer simulations in various mobile channel environments.

Data Hiding Using Sequential Hamming + k with m Overlapped Pixels

  • Kim, Cheonshik;Shin, Dongkyoo;Yang, Ching-Nung;Chen, Yi-Cheng;Wu, Song-Yu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.6159-6174
    • /
    • 2019
  • Recently, Kim et al. introduced the Hamming + k with m overlapped pixels data hiding (Hk_mDH) based on matrix encoding. The embedding rate (ER) of this method is 0.54, which is better than Hamming code HC (n, n - k) and HC (n, n - k) +1 DH (H1DH), but not enough. Hamming code data hiding (HDH) is using a covering function COV(1, n = 2k -1, k) and H1DH has a better embedding efficiency, when compared with HDH. The demerit of this method is that they do not exploit their space of pixels enough to increase ER. In this paper, we increase ER using sequential Hk_mDH (SHk_mDH ) through fully exploiting every pixel in a cover image. In SHk_mDH, a collision maybe happens when the position of two pixels within overlapped two blocks is the same. To solve the collision problem, in this paper, we have devised that the number of modification does not exceed 2 bits even if a collision occurs by using OPAP and LSB. Theoretical estimations of the average mean square error (AMSE) for these schemes demonstrate the advantage of our SHk_mDH scheme. Experimental results show that the proposed method is superior to previous schemes.

A Genetic Algorithm Based Source Encoding Scheme for Distinguishing Incoming Signals in Large-scale Space-invariant Optical Networks

  • Hongki Sung;Yoonkeon Moon;Lee, Hagyu
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.151-157
    • /
    • 1998
  • Free-space optical interconnection networks can be classified into two types, space variant and space invariant, according to the degree of space variance. In terms of physical implementations, the degree of space variance can be interpreted as the degree of sharing beam steering optics among the nodes of a given network. This implies that all nodes in a totally space-invariant network can share a single beam steering optics to realize the given network topology, whereas, in a totally space variant network, each node requires a distinct beam steering optics. However, space invariant networks require mechanisms for distinguishing the origins of incoming signals detected at the node since several signals may arrive at the same time if the node degree of the network is greater than one. This paper presents a signal source encoding scheme for distinguishing incoming signals efficiently, in terms of the number of detectors at each node or the number of unique wavelengths. The proposed scheme is solved by developing a new parallel genetic algorithm called distributed asynchronous genetic algorithm (DAGA). Using the DAGA, we solved signal distinction schemes for various network sizes of several topologies such as hypercube, the mesh, and the de Brujin.

  • PDF

Phase Mode Decision Scheme for Fast Encoding in H.264 SVC (H.264/AVC 스케일러블 비디오 코딩에서 빠른 부호화를 위한 단계적 모드 선택 기법)

  • Goh, Gyeong-Eun;Kang, Jin-Mi;Cho, Mi-Sook;Chung, Ki-Dong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.8
    • /
    • pp.793-797
    • /
    • 2008
  • To achieve flexible visual contents adaptation for multimedia communications, the ISO/IEC MPEG & ITU-T VCEG form the JVT to develop an SVC amendment for the H.264/AVC standard. JVT uses inter-layer prediction that can improve the rate-distortion efficiency of the enhancement layer. But inter-layer prediction causes computational complexity to be increased. In this paper, we propose a fast mode decision for inter frame coding. It makes use of the correlation between optimized prediction mode and its RD cost. Experimental results show that the proposed schemes save up to 38% of encoding time with a negligible coding loss and bit-rate increase.

Soft Network Coding in Wireless Two-Way Relay Channels

  • Zhang, Shengli;Zhu, Yu;Liew, Soung Chang
    • Journal of Communications and Networks
    • /
    • v.10 no.4
    • /
    • pp.371-383
    • /
    • 2008
  • Application of network coding in wireless two-way relay channels (TWRC) has received much attention recently because its ability to improve throughput significantly. In traditional designs, network coding operates at upper layers above (including) the link layer and it requires the input packets to be correctly decoded. However, this requirement may limit the performance and application of network coding due to the unavoidable fading and noise in wireless networks. In this paper, we propose a new wireless network coding scheme for TWRC, which is referred to as soft network coding (SoftNC), where the relay nodes applies symbol-by-symbol soft decisions on the received signals from the two end nodes to come up with the network coded information to be forwarded. We do not assume further channel coding on top of SoftNC at the relay node (channel coding is assumed at the end nodes). According to measures of the soft information adopted, two kinds of SoftNC are proposed: amplify-and-forward SoftNC (AF-SoftNC) and soft-bit-forward SoftNC (SBF-SoftNC). We analyze the both the ergodic capacity and the outage capacity of the two SoftNC schemes. Specifically, analytical form approximations of the ergodic capacity and the outage capacity of the two schemes are given and validated. Numerical simulation shows that our SoftNC schemes can outperform the traditional network coding based two-way relay protocol, where channel decoding and re-encoding are used at the relay node. Notable is the fact that performance improvement is achieved using only simple symbol-level operations at the relay node.

Performance Improvement of Distributed Compressive Video Sensing Using Reliability Estimation (신뢰성 예측을 이용한 분산 압축 비디오 센싱의 성능 개선)

  • Kim, Jin-soo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.6
    • /
    • pp.47-58
    • /
    • 2018
  • Recently, remote sensing video applications have become increasingly important in many wireless networks. Distributed compressive video sensing (DCVS) framework in these applications has been studied to reduce encoding complexity and to simultaneously capture and compress video data. Specially, a motion compensated block compressed sensing with smoothed projected Landweber (MC-BCS-SPL) has been actively researched for one useful algorithm of DCVS schemes, However, conventional MC-BCS-SPL schemes do not provide good visual qualities in reconstructed Wyner-Ziv (WZ) frames. In this paper, the conventional schemes of MC-BCS-SPL are described and then upgraded to provide better visual qualities in WZ frames by introducing reliability estimate between adjacent key frames and by constructing efficiently motion-compensated interpolated frames. Through experimental results, it is shown that the proposed algorithm is effective in providing better visual qualities than conventional algorithm.

A Differential SFBC-OFDM for a DMB System with Multiple Antennas

  • Woo, Kyung-Soo;Lee, Kyu-In;Paik, Jong-Ho;Park, Kyung-Won;Yang, Won-Young;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2A
    • /
    • pp.195-202
    • /
    • 2007
  • A differential space-frequency block code - orthogonal frequency division multiplexing (SFBC-OFDM) scheme as a multiple-input multiple-output (MIMO) transmission technique for next-generation digital multimedia broadcasting (DMB) is proposed in this paper. A linear decoding method for differential SFBC, which performs comparably to the ML decoding method, is derived for the cases of two or four transmit antennas. A simple table lookup method is proposed to improve the efficiency of the encoding/decoding process of DSFBC for the case of non-constant modulus constellations. A DMB MIMO channel model, developed by extending the 3GPP MIMO model to fit DMB environments, is used to compare BER performances of differential space block code schemes for various channel environments. Simulation results show that the differential SFBC-16QAM scheme using either four transmit antennas with one receive antenna or two transmit antennas with two receive antennas achieves a performance gain of 12dB than that of the conventional DQPSK scheme, even with a data rate twice faster.

Optimal Respiratory Ordering Scheme (OROS) for Correcting Blurring Artifacts in Abdominal Magnetic Resonance Imaging (복부 핵자기공명 영상에서 영상번짐의 교정을 위한 최적 호흡 정렬법)

  • Jung, Kwan-Jin;Ahn, Woo-Youn;Cho, Zang-Hee
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1990 no.11
    • /
    • pp.15-18
    • /
    • 1990
  • In abdominal NMR imaging the respiratory ordering techniques have been successfully used to remove the ghosting artifacts arising from the respiratory motion. In the existing respiratory ordering schemes, however, it is generally accepted that blurring of the moving parts still remains as in the signal averaging technique. A new optimal respiratory ordering scheme which can correct the blurring as well as the ghosting artifacts is theoretically derived through the analysis of the phase encoding directional motion effects in Fourier imaging. The performance of the optimal respiratory ordering scheme is experimentally confirmed together with a suboptimal ordering scheme which is suggested as a compromise for the practicality.

  • PDF

ATM Interface Technologies for an ATM Switching System

  • Park, Hong-Shik;Kwon, Yool;Kim, Young-Sup;Kang, Seok-Youl
    • ETRI Journal
    • /
    • v.18 no.4
    • /
    • pp.229-244
    • /
    • 1997
  • Realization of the economical, reliable, and efficient ATM interface block becomes an important key to development of the ATM switching system when we consider new issues raised recently. In this paper, we summarize requirements for the ATM interface block and present the UNI (User Network Interface)/NNI (Network Node Interface) architecture to meet these requirements. We also evaluate the performance of the multiplexer adopting the various multiplexing schemes and service disciplines. For ATM UNI/NNI interface technologies, we have developed a new policing device using the priority encoding scheme. It can reduce the decision time for policing significantly. We have also designed a new spacer that can space out the clumped cell stream almost perfectly. This algorithm guarantees more than 99 % conformance to the negotiated peak cell rate. Finally, we propose the interface architecture for accommodation of the ABR (Available Bit Rate) transfer capability. The proposed structure that performs virtual source and virtual destination functions as well as a switch algorithm can efficiently accommodate the ABR service.

  • PDF