WAVE 시스템에서는 통신 보안 기능을 지원하기 위해 IEEE Std 1609.2 규격이 정의되었다. IEEE Std 1609.2에서는 자동차 통신에서의 보안 서비스 및 관리 메시지의 구조를 ASN.1으로 정의하였다. 또한 이 메시지 구조를 COER 방식으로 인코딩하도록 하고 있다. 본 논문에서는 IEEE Std 1609.2에 정의된 보안 메시지를 처리하는 IEEE Std 1609.2 메시지 인코더/디코더를 설계 및 구현하였다. 설계된 인코더/디코더는 IEEE Std 1609.2 메시지 구조에 부합하는 C 언어 데이터 구조의 메시지를 생성하는 모듈, 메시지 인코더 모듈, 메시지 디코더 모듈로 구성되며, 리눅스 환경에서 구현되었다. 또한 구현된 인코더/디코더의 수행 속도를 측정하여 그 성능을 분석하였다.
본 논문은 개선된 Anti-cloche filter를 사용하는 SECAM video encoder와 오차가 없는 제곱근기와 BPF를 사용하는 SECAM video decoder를 제안하고자 한다. SECAM video encoder는 ITU-R BT.470에 의해 지정된 Anti-cloche filter를 사용하지만, Anti-cloche filter가 가지는 특성이 주파수에 따라 매우 급격히 변하기 때문에 디지털회로의 설계에 적용하기가 어렵다. 이러한 문제를 해결하기 위해서 본 논문에서는 Anti-cloche filter의 주파수 특성이 좌우대칭이라는 점을 이용하여서 좌우대칭의 중심이 되는 주파수인 4.286MHz를 0MHz로 이동하여 Anti-cloche filter를 High Pass Filter(HPF)로 변환한다. 변환된 HPF는 Anti-cloche filter에 비해 구조가 간단하기 때문에 설계가 비교적 용이하다. 또한 본 논문에서 제시한 SECAM video decoder는 주파수 변조된 신호로부터 색차신호(Db, Dr)를 복원하기 위해서 오차가 없는 제곱근기와 두 개의 미분기 그리고 삼각함수를 이용하여 색상신호의 잡음을 제거하고 CVBS(Composite Video Baseband Signal)로부터 색상신호와 밝기신호를 분리하기 위해서 BPF를 사용한다. 제안된 시스템은 Altera FPGA인 APEX20KE EP20K1000EBC652-3와 TV를 이용하여 실시간 검증을 수행하였다.
In this paper, we propose an automatic composition method using time series embedding of RNN Auto-Encoder. RNN Auto-Encoder can learn existing songs and can compose new songs from the trained RNN decoder. If one song is fully trained in the RNN Auto-Encoder, the song is embedded into the vector values of RNN nodes in the Auto-Encoder. If we train a lot of songs and apply a specific vector to the decoder of Auto-Encoder, then we can obtain a new song that combines the features of trained multiple songs according to the given vector. From extensive experiments we could find that our method worked well and generated various songs by selecting of the composition vectors.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권4호
/
pp.1689-1703
/
2020
When data is transmitted over an unreliable channel, the error of the data packet may result in serious degradation. The multiple description coding (MDC) can solve this problem and save transmission costs. In this paper, we propose a deep multiple description coding network (MDCN) to realize efficient image compression. Firstly, our network framework is based on convolutional auto-encoder (CAE), which include multiple description encoder network (MDEN) and multiple description decoder network (MDDN). Secondly, in order to obtain high-quality reconstructed images at low bit rates, the encoding network and decoding network are integrated into an end-to-end compression framework. Thirdly, the multiple description decoder network includes side decoder network and central decoder network. When the decoder receives only one of the two multiple description code streams, side decoder network is used to obtain side reconstructed image of acceptable quality. When two descriptions are received, the high quality reconstructed image is obtained. In addition, instead of quantization with additive uniform noise, and SSIM loss and distance loss combine to train multiple description encoder networks to ensure that they can share structural information. Experimental results show that the proposed framework performs better than traditional multiple description coding methods.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권3호
/
pp.653-669
/
2024
Dynamic scene deblurring is a complex computer vision problem owing to its difficulty to model mathematically. In this paper, we present a novel approach for image deblurring with the help of the sharp reference image, which utilizes the reference image for high-quality and high-frequency detail results. To better utilize the clear reference image, we develop an encoder-decoder network and two novel modules are designed to guide the network for better image restoration. The proposed Reference Extraction and Aggregation Module can effectively establish the correspondence between blurry image and reference image and explore the most relevant features for better blur removal and the proposed Spatial Feature Fusion Module enables the encoder to perceive blur information at different spatial scales. In the final, the multi-scale feature maps from the encoder and cascaded Reference Extraction and Aggregation Modules are integrated into the decoder for a global fusion and representation. Extensive quantitative and qualitative experimental results from the different benchmarks show the effectiveness of our proposed method.
본 논문에서는 동영상의 실시간 부/복호화를 위한 하드웨어 기반의 CAVLC 엔트로피 부/복호화기 구조를 제안한다. H.264/AVC의 무손실 압축 기법인 내용기반 가변길이 부호화(Context-based Adaptive Variable Length Coding)는 이전 표준의 기법과 다른 알고리즘을 채용하여 높은 부호화 효율과 복잡도를 가지고 있다. 이를 하드웨어 구조로 설계하기 위하여 메모리 재사용 기법을 적용하여 리소스를 최적화 하였으며, 지금까지 제시된 여러 엔트로피 부/복호화 구조 중 휴대용 기기에 적합한 성능 대비 리소스를 가지는 구조를 선택하고 이를 병렬 처리 구조로 설계하여 부호화 성능을 향상시켰다. 구현된 전체 모듈은 Altera사의 Excalibur 디바이스를 이용하여 검증하고 삼성 STD130 0.18um CMOS Cell Library를 이용하여 합성 및 검증하였다. 이를 ASIC으로 구현할 경우 부호화기는 150Mhz 동작주파수에서 CIF 크기의 동영상을 초당 300프레임 이상 처리하며 복호화기는 140Mhz 동작주파수에서 CIF 크기의 동영상을 초당 250 이상 처리할 수 있다. 본 결과는 하드웨어 기반의 H.264/AVC 실시간 부호화기와 복호화기를 설계하기에 적합한 하드웨어 구조임을 보여준다.
분산 동영상 코딩(Distributed Video Coding)은 기존의 동영상 코딩과 다르게 인코더와 디코더 사이의 복잡도 분배가 가능한 새로운 코딩 방식이다. 본 논문에서는 단계적 움직임 예측을 이용하여 인코더와 디코더의 복잡도를 분배하는 방법을 제안한다. 인코더에서는 부분적으로 움직임 예측을 수행하여 그 결과를 디코더로 전송하고, 디코더는 이를 받아 좁혀진 범위 내에서 남은 움직임 예측을 수행하게 된다. 인코더에서 어느 정도 복잡도를 감당할 수 있을 때 인코더와 디코더 사이의 복잡도 분배 비율의 조절이 가능하다. 이를 통해 복잡도 분배 비율과 압축효율과의 상관성을 알아볼 수 있는데, 인코더의 복잡도 상승에 의한 압축효율 향상율이 디코더 복잡도 상승에 의한 압축효율 향상율보다 훨씬 크다는 것을 알 수 있다. 제안 방법을 통해 단말기의 성능이나 채널 상황에 따라 인코더와 디코더 사이의 복잡도를 적응적으로 분배하고 그에 따라 코딩 성능을 조절할 수 있다.
본 논문은 Verilog HDL로 FPGA에 JPEG Decoder를 구현하여 TV에 JPEG 영상을 디스플레이 하기 위한 JPEG Image Display Board 설계 방법을 제안한다. 본 논문은 FPGA에 Decoder Algorithm을 구현하기 위한 효율적인 방안을 제시하였으며 JPEG Decoder Algorithm은 JPEG Standard Baseline에 기준으로 하여 설계 하였다. 압축된 JPEG bit stream을 저장하기 위하여 Nand Flash Memory를 사용하였으며, JPEG Decoding된 영상을 TV화면에서 확인하기 위하여 Video Encoder를 사용하였다. 또 한 JPEG 영상에 Text data를 쓰기 위하여 YCbCr의 출력 bit를 RGB 24bit로 변환하였다. Video Encoder에 변환된 RGB Data를 동기시켜 출력하기 위하여 CVBS 입력을 Sync Separator에 의해 Hsync, Vsync, Sync, Field signal로 분리하였다. 또한 Display B/D상의 스위치를 통하여 JPEG 모드와 일반영상 모드를 선택할 수 있게 입증하였다.
The auto-encoder network which is a good candidate to handle the modeling of the signal strength attenuation is designed for denoising and compensating the distortion of the received data. It provides a non-linear mapping function by iteratively learning the encoder and the decoder. The encoder is the non-linear mapping function, and the decoder demands accurate data reconstruction from the representation generated by the encoder. In addition, the adaptive network width which supports the automatic generation of new hidden nodes and pruning of inconsequential nodes is also implemented in the proposed algorithm for increasing the efficiency of the algorithm. Simulation results show that the proposed method can improve the neural network training surface to achieve the highest possible accuracy of the signal modeling compared with the conventional modeling method.
뉴로모픽 기술은 인간의 뇌 구조와 연산과정을 하드웨어로 모방하는 기술로 기존 인공지능 기술의 단점을 보완하기 위하여 제안되었다. 뉴로모픽 하드웨어 기반의 IoT 응용을 개발하기 위해 NA-IDE가 제안되었으며, NA-IDE에서 SNN 모델을 구현하기 위하여 일반적으로 많이 사용되는 입력 데이터를 SNN모델에 사용할 수 있도록 변환이 필요하다. 본 논문에서는 이미지 데이터를 SNN 입력으로 사용하기 위하여 스파이크 시계열 패턴으로 변환하는 신경코딩 방식의 인코더 컴포넌트를 구현하였다. 디코더 컴포넌트는 SNN 모델이 스파이크 시계열 패턴을 생성하는 경우, 출력된 시계열 데이터를 다시 이미지 데이터로 변환하도록 구현하였다. 디코더 컴포넌트는 출력 데이터에 인코딩 과정과 동일한 매개변수를 사용한 경우, 원본 데이터와 유사한 정적 데이터를 얻을 수 있었다. 제안된 인코더와 디코더를 사용한다면 image-to-image나 speech-to-speech와 같이 입력 데이터를 변환하여 재생성하는 분야에 사용할 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.