• Title/Summary/Keyword: Encapsulated Nitrate

Search Result 4, Processing Time 0.019 seconds

Effect of Encapsulating Nitrate in Sesame Gum on In vitro Rumen Fermentation Parameters

  • Mamvura, Chiedza Isabel;Cho, Sangbuem;Mbiriri, David Tinotenda;Lee, Hong-Gu;Choi, Nag-Jin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.11
    • /
    • pp.1577-1583
    • /
    • 2014
  • Encapsulation is a method used to protect material from certain undesirable environments, for controlled release at a more favorable time and place. Animal productivity would be enhanced if feed additives are delivered to be utilized at their site of action, bypassing the rumen where they are likely to be degraded by microbial action. A novel method of encapsulation with sesame gum was used to coat nitrate, a known enteric methane mitigating agent, and tested for the effect on methane reduction and other in vitro fermentation parameters using rumen fluid from cannulated Hanwoo steers. Orchard grass was used as basal diet for fermentation. The treatments were matrix (1.1 g sesame gum+0.4 g sesame oil cake) only, encapsulated nitrate (matrix+nitrate [21 mM]), free nitrate (21 mM), and a control that contained no additive. Analyses of fermentation parameters were done at 0, 3, 6, 9, 12, 24, and 48 h time periods. In comparison to control, both free and encapsulated nitrate produced significantly reduced (p<0.01) methane (76% less) and also the total volatile fatty acids were reduced. A significantly higher (p<0.01) concentration of ammonia nitrogen was obtained with the encapsulated nitrate treatment (44%) compared to the free form (28%) and matrix only (20%) (p = 0.014). This might suggest slow release of encapsulated nitrate so that it is fully reduced to ammonia. Thus, this pioneering study found a significant reduction in methane production following the use of sesame gum encapsulated nitrate that shows the potential of a controlled release system in enhancing sustainability of ruminant production while reducing/eliminating the risk of nitrite toxicity.

Factors that Influence Biofilm Formation in Vibrio parahaemolyticus (장염비브리오의 biofilm 형성에 영향을 미치는 인자)

  • No, A-Reum;Park, Kwon-Sam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.5
    • /
    • pp.456-460
    • /
    • 2009
  • Biofilm is a structured community of microorganism encapsulated within a self-developed polymeric matrix and adherent to a living or a solid surface. In this study, we investigated the effects of various substrates on the formation of biofilm in Vibrio parahaemolyticus. We found that biofilm formation profoundly increased in a substrate, that consisted of calcium chloride, calcium nitrate, and calcium sulfate in 1% peptone water. On the other hand, a dramatic reduction in biofilm formation was observed in a substrate, that consisted of glucose and ferric chloride in LB broth. These results suggest that V. parahaemolyticus prefer to form a biofilm on the surface of a crustacean or a clam, where calcium ion is rich, and also where seawater temperature is relatively lower. In contrast, high levels of glucose in a crustacean or a clam body resulting from increased seawater temperature, can make V. parahaemolyticus detach from it and lead to free floating.

Enzyme Immobilized Reactor Design for Ammonia Removal from Waste Water

  • Song, Ju-Yeong;Chung, Soo-Bae
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.2 no.2
    • /
    • pp.77-81
    • /
    • 1997
  • Removal of nitrogen compound from waste water is essential and often accomplished by biological process. To prevent washout and to develop an efficient bioreactor, immobilization of sutibal microorganisms could be sensible approach. Strains and permeabilized cell encapsulated in cellulose nitrate microcapsules and immobilized on polystyrene films were prepared by the method described in the previous study. In the wastewater treatment system, nitrification of ammonia component is generally known as rate controlling step. To enhance the rate of nitrification, firstly nitrifying strains Nitrosomonas europaea(IFO14298), are permeabilized chemically, and immobilized on polystyrene films and secondly oxidation rates of strain system and permeabilized strain system are compared in the same condition. with 30 minute permeabilized cells, it took about 25 hours to oxidize 70% of ammonia in the solution, while it took about 40 hours to treat same amount of ammonia with untreated cells. All the immobilization procedures did not harm to the enzyme activity and no mass transfer resistance through the capsule well was shown. In the durability test of immobilized system, the system showed considerable activity for the repeated operation for 90 days. With these results, the system developed in this study showed the possibility to be used in the actual waste water treatment system.

  • PDF

Studies on Proper Medium for Somatic Embryogenesis in Suspension Culture of Rehmania glutinosa and Encapsulation of Somatic Embryos (지황의 현탁배양에서 체세포배 형성에 관여하는 요인분석과 체세포배의 Encapsulation)

  • Park, Ju-Hyun;Park, Sang-Un;Chae, Young-Am
    • Korean Journal of Medicinal Crop Science
    • /
    • v.3 no.2
    • /
    • pp.100-106
    • /
    • 1995
  • This study was conducted to find the factors affecting somatic embryogenesis in suspension culture of Rehmania glutinosa and investigate the possibility of artificial seed production by encapsulation of somatic embryos. Linsmeier-Skoog medium was appeared as proper for somatic embryogenesis. Sucrose with $3{\sim}5%$ as carbon sources was good for somatic embryogenesis, and both ammonium and nitrate nitrogen were necesary for normal somatic embryo production. BA with NAA or kinetin with NAA were better than the use of cytokinin alone for both somatic embryogenesis and numbers of somatic embryos. $AgNO_3$ as protectant for vitrification of seedlings in vitro culture had no harmful effect on somatic embryos. Sphericity of encapsulated seeds was good at 3% gel of sodium alginate but germination was better at 2.5% sodium alginate level. Artificial seeds were germinated and developed normal shoots and roots under in vitro condition.

  • PDF