• Title/Summary/Keyword: Empirical formula

Search Result 610, Processing Time 0.027 seconds

Feasibility Study on a Damage Assessment of Underground Structures by Ground Shock Using the Fast Running Model (지중파에 의한 지하 구조물의 부재피해평가를 위한 고속해석모델 적용 가능성 연구)

  • Sung, Seung-Hun;Chong, Jin-Wung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.279-287
    • /
    • 2018
  • This study investigated applicability of the fast running model for damage assessment of underground structures by ground shock. For this reason, the fast running model that consists of two main models such as the ground shock generation and propagation model and the underground structural damage assessment model was developed. The ground shock generation and propagation model was programed using theoretical formula and empirical formula introduced in TM5-855-1(US army manual). The single degree of freedom model of structural components was utilized to predict structural dynamic displacements which are used as index to assess damage level of components. In order to confirm the feasibility of the developed fast running model, underground structural dynamic displacements estimated from the fast running model were compared to displacements obtained from the finite element analysis.

Modeling and Simulation of the 6 DOF Motion of a High Speed Planing Hull Running in Calm Sea (정수중을 활주하는 고속선의 6자유도 운동 모델링 및 시뮬레이션)

  • Yoon, Hyeon Kyu;Kang, Namseon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.1
    • /
    • pp.10-17
    • /
    • 2016
  • When a planing hull straightly runs and turns, its floating position and pitch angle are changed depending on its speed, and large transient motion happens. In this paper, six degrees of freedom(6 DOF) equations of motion, which could simulate the motion of a planing hull, are established. Static and dynamic forces in vertical plane are modeled using pre-calculated displacements and metacentric heights depending on various draft, lift under bottom, and vertical damping coefficients which are used to tune the final motion. Hydrodynamic coefficients in horizontal plane at various equilibrium state are calculated by using Lewandowski's empirical formula and the speed-dependent equilibrium state are calculated beforehand by Savitsky's formula. The speed effects are considered by curve-fitting the coefficients at various speed to the polynomials. Accelerating, decelerating and backing, turning, and zig-zag are simulated and compared with the sea trial results, and it is confirmed that the speed reduction, roll, and pitch during such maneuvers of sea trial and simulation are well consistent.

Estimation of Permeability Coefficient Using Fractal Dimension of Particle Size Distribution Curve in Granular Soils (조립토 입도분포곡선의 프랙탈차원을 이용한 투수계수의 예측)

  • Park Jae-Seong;Chang Pyoung-Wuck;Son Young-Hwan;Kim Seong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.4
    • /
    • pp.41-49
    • /
    • 2006
  • Since particle size distribution curves are useful to estimate permeability of soil, many formulae for permeability coefficient (k) have been published using the parameter from the curves and factors, such as grain size, particle shape and void ratio of soils. However, the parameters such as $C_c,\;C_u$ and $D_n$ derived from only some discrete points on the curve are insufficient to represent the whole gradation. In this paper fractal dimension which is quite new concept and known to be able to represent the entire curve of particle size distribution is employed for the parameters. An empirical formula of permeability coefficient has been developed with fractal dimension and percent of finer than 0.075 mm. The formula developed from this study has confirmed its effectiveness by a series of laboratory tests and comparison to other published formulae. It is found that permeability coefficient is proportional to fractal dimension and inversely proportional to percent of fines.

Numerical Analysis of Optimum Air-Layer Thickness in a Double Glazing Window (이중창 공기층의 최적두께에 관한 수치해석)

  • Hwang Ho June;Choi Hyoung Gwon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.191-199
    • /
    • 2005
  • Double pane window system, in which an air layer with a finite width is filled between glasses, is used in order to increase the insulation efficiency. In the present study, a conjugate heat transfer problem of a double pane window system has been studied numerically in order to investigate the effect of an air layer on the heat transmittance of the double pane window system using a finite element method based on P2P1 basis function. In this study on the conjugate heat transfer of a double pane window system, numerically predicted Nusselt numbers with or without conjugate heat transfer effect have been compared with an available existing empirical formula. It has been found that a Nusselt number from an existing formula for an enclosed space is different from that obtained from the present conjugate heat transfer analysis mainly due to the effects of a very high aspect ratio and conjugate heat transfer mechanism. Furthermore, it has been shown that the numerically estimated optimal air thickness of the double pane window system with conjugate heat transfer effect is a little bit longer than that obtained without considering conjugate heat transfer effect.

Design of Detention Pond and Critical Duration of Design Rainfall in Seoul

  • Lee, Jong-Tae;Yoon, Sei-Eui;Lee, Jae-Joon
    • Korean Journal of Hydrosciences
    • /
    • v.5
    • /
    • pp.33-43
    • /
    • 1994
  • This study is to determine the critical duration of design rainfall and to utilize it for the design of detention pond with pump station. To examine the effect of the duration and temporal distribytion of the design rainfall, Huff's quartile method is used for the 9 cases of durations (ranges from 20 to 240 minutes) with ten years return period, and the ILLUDAS model is used for runoff analysis. The storage ratio, which is the ratio of maximum storage amounts to total runoff volume, is introduced to determine the criticalduration of design rainfall. The duration which maximizes the storage ratio is adopted as the critical duration. This study is applied to 18 urban drainage watercheds with pump station in Seoul, of which the range of watershed area is 0.24~12.70$km^2$. The result of simulation shows that the duration which maximizes storage ratio is 30 and 60 minutes on the whole. It is also shown that the storage ratios of 2nd - and 3rd-quartile pattern are larger than those of 1st- and 4th-quartile pattern of temporal distribution. A simplified empirical formula for Seoul area is suggested by the regression analysis between the maximum storage ratio and the peak ratio. This formula can be utilized for the preliminary design and planning of detention pond with pump station.

  • PDF

Analysis of permeability in rock fracture with effective stress at deep depth

  • Lee, Hangbok;Oh, Tae-Min;Park, Chan
    • Geomechanics and Engineering
    • /
    • v.22 no.5
    • /
    • pp.375-384
    • /
    • 2020
  • In this study, the application of conventional cubic law to a deep depth condition was experimentally evaluated. Moreover, a modified equation for estimating the rock permeability at a deep depth was suggested using precise hydraulic tests and an effect analysis according to the vertical stress, pore water pressure and fracture roughness. The experimental apparatus which enabled the generation of high pore water pressure (< 10 MPa) and vertical stress (< 20 MPa) was manufactured, and the surface roughness of a cylindrical rock sample was quantitatively analyzed by means of 3D (three-dimensional) laser scanning. Experimental data of the injected pore water pressure and outflow rate obtained through the hydraulic test were applied to the cubic law equation, which was used to estimate the permeability of rock fracture. The rock permeability was estimated under various pressure (vertical stress and pore water pressure) and geometry (roughness) conditions. Finally, an empirical formula was proposed by considering nonlinear flow behavior; the formula can be applied to evaluations of changes of rock permeability levels in deep underground facility such as nuclear waste disposal repository with high vertical stress and pore water pressure levels.

Estimating UCS of cement-grouted sand using characteristics of sand and UCS of pure grout

  • Lee, Changho;Nam, Hongyeop;Lee, Woojin;Choo, Hyunwook;Ku, Taeseo
    • Geomechanics and Engineering
    • /
    • v.19 no.4
    • /
    • pp.343-352
    • /
    • 2019
  • For quality control and the economical design of grouted sand, the prior establishment of the unconfined compressive strength (UCS) estimating formula is very important. This study aims to develop an empirical UCS estimating formula for grouted sand based on the physical properties of sands and the UCS of cured pure grout. Four sands with varying particle sizes were grouted with both microfine cement and Ordinary Portland cement. Grouted specimens were prepared at three different relative densities and at three different water-to-cement ratios, and unconfined compression tests were performed. The results demonstrate that UCS of grouted sand can be expressed as the power function of the UCS of cured pure grout: $UCS_{grouted\;sand}/1MPa=A_{soil}{\cdot}(UCS_{pure}/1MPa)^N$. Because the exponent N strongly depends on the combination of pore area and pore size, N is expressed as the function of porosity (n) and specific surface ($S_a$). Additionally, because $S_a$ determines the area of the sand particle that cement particles can adsorb and n determines the number of cementation bondings between sand particles, $A_{soil}$ is also expressed as the function of n and $S_a$. Finally, the direct relationship between $A_{soil}$ and N is also investigated.

Application of ANFIS to the design of elliptical CFST columns

  • Ngoc-Long Tran;Trong-Cuong Vo;Duy-Duan Nguyen;Van-Quang Nguyen;Huy-Khanh Dang;Viet-Linh Tran
    • Advances in Computational Design
    • /
    • v.8 no.2
    • /
    • pp.147-177
    • /
    • 2023
  • Elliptical concrete-filled steel tubular (CFST) column is widely used in modern structures for both aesthetical appeal and structural performance benefits. The ultimate axial load is a critical factor for designing the elliptical CFST short columns. However, there are complications of geometric and material interactions, which make a difficulty in determining a simple model for predicting the ultimate axial load of elliptical CFST short columns. This study aims to propose an efficient adaptive neuro-fuzzy inference system (ANFIS) model for predicting the ultimate axial load of elliptical CFST short columns. In the proposed method, the ANFIS model is used to establish a relationship between the ultimate axial load and geometric and material properties of elliptical CFST short columns. Accordingly, a total of 188 experimental and simulation datasets of elliptical CFST short columns are used to develop the ANFIS models. The performance of the proposed ANFIS model is compared with that of existing design formulas. The results show that the proposed ANFIS model is more accurate than existing empirical and theoretical formulas. Finally, an explicit formula and a Graphical User Interface (GUI) tool are developed to apply the proposed ANFIS model for practical use.

Calculation of the Yield of Bank Filtration by Using the Horizontal Collector Wells (방사형 집수정에 의한 강변여과수 산출량 산정에 관한 연구)

  • Chung Ji-hoon;Park Jae-hyeon;Park Chang-kun;Yang Jung-suk;Kim Dae-kun;Jeong Kyo-cheol;Choi Youg-sun;Bu Sung-an
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.417-427
    • /
    • 2004
  • The horizontal collector well is used to treat some weak points of the vertical well in the bank filtration site. In this study two empirical formulas(Milojevic and Petrovic) are selected to examine the applicability for calculating the yield of the horizontal collector. And they are compared with the compute simulation results for multiple wells. Milojevic empirical formula which considers the conditions such as aquifer, well location, the diameter of screen etc. is more applicable than Petrovic formula. Draw-down characteristics of horizontal collector was well simulated by using the computer simulation for multiple wells. The results are well agreement with Milojevic formula, and the draw-down and the retention time of the horizontal collector can be controlled by adjusting the angle of lateral screens.

Development of head loss coefficient formula at surcharged four-way combining square manhole with variation of inlet flow (유입유량 변화를 고려한 과부하 4방향 사각형 합류맨홀에서의 손실계수 산정식 개발)

  • Jo, Jun Beom;Kim, Jung Soo;Yoon, Sei Eui
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.12
    • /
    • pp.877-887
    • /
    • 2017
  • The energy losses due to surcharged flow at four-way combining manhole, which is mainly installed in the downstream of urban sewer system, is the main cause of inundation in urban area. Surcharged four-way combining manholes form various flow configuration such as straight through, T-type, and four-way manholes depending on variation of inflow discharge in inlet pipes. Therefore, it is necessary to analyze change of energy loss and estimate head loss coefficients at surcharged four-way combining manhole with variation of inflow discharge ratio. The hydraulic experimental apparatus which can change inflow ratios were installed to analyze the flow characteristics at four-way combining manhole. In this study, to calculate the head loss coefficient according to change of the inflow discharge ratios at the surcharged four-way combining square manhole, the discharge conditions of 40 cases which the inflow ratios of each inlet pipe were changed by 10% interval was selected. The head loss coefficient at surcharged square manhole showed the lowest value of 0.40 at the straight manhole and the highest value of 1.58 at the $90^{\circ}$ junction manhole. In the combining manholes (T-type and four-way), the head loss coefficients were calculated more higher as the lateral flow rate was biased. The contour map of head loss coefficient range was constructed by using the estimated head loss coefficients and the empirical formula of head loss coefficients was derived to consider the variation of inflow discharge ratios at the surcharged square manhole. The empirical formula could be applied to the design and assessment of the urban drainage system.