• Title/Summary/Keyword: Empirical conditional mean

Search Result 14, Processing Time 0.021 seconds

Modeling and Forecasting Saudi Stock Market Volatility Using Wavelet Methods

  • ALSHAMMARI, Tariq S.;ISMAIL, Mohd T.;AL-WADI, Sadam;SALEH, Mohammad H.;JABER, Jamil J.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.11
    • /
    • pp.83-93
    • /
    • 2020
  • This empirical research aims to modeling and improving the forecasting accuracy of the volatility pattern by employing the Saudi Arabia stock market (Tadawul)by studying daily closed price index data from October 2011 to December 2019 with a number of observations being 2048. In order to achieve significant results, this study employs many mathematical functions which are non-linear spectral model Maximum overlapping Discrete Wavelet Transform (MODWT) based on the best localized function (Bl14), autoregressive integrated moving average (ARIMA) model and generalized autoregressive conditional heteroskedasticity (GARCH) models. Therefore, the major findings of this study show that all the previous events during the mentioned period of time will be explained and a new forecasting model will be suggested by combining the best MODWT function (Bl14 function) and the fitted GARCH model. Therefore, the results show that the ability of MODWT in decomposition the stock market data, highlighting the significant events which have the most highly volatile data and improving the forecasting accuracy will be showed based on some mathematical criteria such as Mean Absolute Percentage Error (MAPE), Mean Absolute Scaled Error (MASE), Root Means Squared Error (RMSE), Akaike information criterion. These results will be implemented using MATLAB software and R- software.

Automatic order selection procedure for count time series models (계수형 시계열 모형을 위한 자동화 차수 선택 알고리즘)

  • Ji, Yunmi;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.2
    • /
    • pp.147-160
    • /
    • 2020
  • In this paper, we study an algorithm that automatically determines the orders of past observations and conditional mean values that play an important role in count time series models. Based on the orders of the ARIMA model, the algorithm constitutes the order candidates group for time series generalized linear models and selects the final model based on information criterion among the combinations of the order candidates group. To evaluate the proposed algorithm, we perform small simulations and empirical analysis according to underlying models and time series as well as compare forecasting performances with the ARIMA model. The results of the comparison confirm that the time series generalized linear model offers better performance than the ARIMA model for the count time series analysis. In addition, the empirical analysis shows better performance in mid and long term forecasting than the ARIMA model.

Price Volatility, Seasonality and Day-of-the Week Effect for Aquacultural Fishes in Korean Fishery Markets (수산물 시장에서의 양식 어류 가격변동성.계절성.요일효과에 관한 연구 - 노량진수산시장의 넙치와 조피볼락을 중심으로 -)

  • Ko, Bong-Hyun
    • The Journal of Fisheries Business Administration
    • /
    • v.40 no.2
    • /
    • pp.49-70
    • /
    • 2009
  • This study proviedes GARCH model(Bollerslev, 1986) to analyze the structural characteristics of price volatility in domestic aquacultural fish market of Korea. As a case study, flatfish and rock-fish are analyzed as major species with relatively high portion in an aspect of production volume among fish captured in Korea. For analyzing, this study uses daily market data (dating from Jan 1 2000 to June 30, 2008) published by the Noryangjin Fisheries Wholesale Market which is located in Seoul of Korea. This study performs normality test on trading volume and price volatility of flatfish and rock-fish as an advanced empirical approach. The normality test adopted is Jarque-Bera test statistic. As a result, first, a null hypothesis that "an empirical distribution follows normal distribution" was rejected in both fishes. The distribution of daily market data of them were not only biased toward positive(+) direction in terms of kurtosis and skewness, but also characterized by leptokurtic distribution with long right tail. Secondly, serial correlations were found in data on market trading volume and price volatility of two species during very long period. Thirdly, the results of unit root test and ARCH-LM test showed that all data of time series were very stationary and demonstrated effects of ARCH. These statistical characteristics can be explained as a reasonable ground for supporting the fitness of GARCH model in order to estimate conditional variances that reveal price volatility in empirical analysis. From empirical data analysis above, this study drew the following conclusions. First of all, from an empirical analysis on potential effects of seasonality and the day of week on price volatility of aquacultural fish, Monday effects were found in both species and Thursday and Friday effects were also found in flatfish. This indicates that Monday is effective in expanding price volatility of aquacultural fish market and also Monday has higher effects upon the price volatility of fish than other days of week have since it has more new information for weekend. Secondly, the empirical analysis led to a common conclusion that there was very high price volatility of flatfish and rock-fish. This points out that the persistency parameter($\lambda$), an index of possibility for current volatility to sustain similarly in the future, was higher than 0.8-equivalently nearly to 1-in both flatfish and rock-fish, which presents volatility clustering. Also, this study estimated and compared and model that hypothesized normal distributions in order to determine fitness of respective models. As a result, the fitness of GARCH(1, 1)-t model was better than model where the distribution of error term was hypothesized through-distribution due to characteristics of fat-tailed distribution, was also better than model, as described in the results of basic statistic analysis. In conclusion, this study has an important mean in that it was introduced firstly in Korea to investigate in price volatility of Korean aquacultural fishery products, although there was partially a limited of official statistic data. Therefore, it is expected that the results of this study will be useful as a reference material for making and assessing governmental policies. Also, it is looked forward that the results will be helpful to build a fishery business plan as and aspect of producer, and also to take timely measures to potential price fluctuations of fishery products in market. Hence, it is advisable that further studies related to such price volatility in fishery market will extend and evolve into a wider variety of articles and issues in near future.

  • PDF

A Study on Developing a VKOSPI Forecasting Model via GARCH Class Models for Intelligent Volatility Trading Systems (지능형 변동성트레이딩시스템개발을 위한 GARCH 모형을 통한 VKOSPI 예측모형 개발에 관한 연구)

  • Kim, Sun-Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.19-32
    • /
    • 2010
  • Volatility plays a central role in both academic and practical applications, especially in pricing financial derivative products and trading volatility strategies. This study presents a novel mechanism based on generalized autoregressive conditional heteroskedasticity (GARCH) models that is able to enhance the performance of intelligent volatility trading systems by predicting Korean stock market volatility more accurately. In particular, we embedded the concept of the volatility asymmetry documented widely in the literature into our model. The newly developed Korean stock market volatility index of KOSPI 200, VKOSPI, is used as a volatility proxy. It is the price of a linear portfolio of the KOSPI 200 index options and measures the effect of the expectations of dealers and option traders on stock market volatility for 30 calendar days. The KOSPI 200 index options market started in 1997 and has become the most actively traded market in the world. Its trading volume is more than 10 million contracts a day and records the highest of all the stock index option markets. Therefore, analyzing the VKOSPI has great importance in understanding volatility inherent in option prices and can afford some trading ideas for futures and option dealers. Use of the VKOSPI as volatility proxy avoids statistical estimation problems associated with other measures of volatility since the VKOSPI is model-free expected volatility of market participants calculated directly from the transacted option prices. This study estimates the symmetric and asymmetric GARCH models for the KOSPI 200 index from January 2003 to December 2006 by the maximum likelihood procedure. Asymmetric GARCH models include GJR-GARCH model of Glosten, Jagannathan and Runke, exponential GARCH model of Nelson and power autoregressive conditional heteroskedasticity (ARCH) of Ding, Granger and Engle. Symmetric GARCH model indicates basic GARCH (1, 1). Tomorrow's forecasted value and change direction of stock market volatility are obtained by recursive GARCH specifications from January 2007 to December 2009 and are compared with the VKOSPI. Empirical results indicate that negative unanticipated returns increase volatility more than positive return shocks of equal magnitude decrease volatility, indicating the existence of volatility asymmetry in the Korean stock market. The point value and change direction of tomorrow VKOSPI are estimated and forecasted by GARCH models. Volatility trading system is developed using the forecasted change direction of the VKOSPI, that is, if tomorrow VKOSPI is expected to rise, a long straddle or strangle position is established. A short straddle or strangle position is taken if VKOSPI is expected to fall tomorrow. Total profit is calculated as the cumulative sum of the VKOSPI percentage change. If forecasted direction is correct, the absolute value of the VKOSPI percentage changes is added to trading profit. It is subtracted from the trading profit if forecasted direction is not correct. For the in-sample period, the power ARCH model best fits in a statistical metric, Mean Squared Prediction Error (MSPE), and the exponential GARCH model shows the highest Mean Correct Prediction (MCP). The power ARCH model best fits also for the out-of-sample period and provides the highest probability for the VKOSPI change direction tomorrow. Generally, the power ARCH model shows the best fit for the VKOSPI. All the GARCH models provide trading profits for volatility trading system and the exponential GARCH model shows the best performance, annual profit of 197.56%, during the in-sample period. The GARCH models present trading profits during the out-of-sample period except for the exponential GARCH model. During the out-of-sample period, the power ARCH model shows the largest annual trading profit of 38%. The volatility clustering and asymmetry found in this research are the reflection of volatility non-linearity. This further suggests that combining the asymmetric GARCH models and artificial neural networks can significantly enhance the performance of the suggested volatility trading system, since artificial neural networks have been shown to effectively model nonlinear relationships.