• Title/Summary/Keyword: Empirical Orthogonal Function method

Search Result 19, Processing Time 0.026 seconds

The Typhoon Surges in the Southern Coast of Korea by Typhoon Brenda (태풍 Brenda에 의한 한국 남해안의 해일)

  • LEE In-Cheol;KIM Jong-Kyu;CHANG Sun-duck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.5
    • /
    • pp.594-604
    • /
    • 1994
  • The storm surges caused by the typhoon Brenda in 1985 were studied by analysing tidal observation data at 7 stations along the south coast of the Korean peninsula. The tidal deviation at these stations along the coast are discussed in association with meteorological data. The sea level anomalies were studied by means of the Empirical Orthogonal Function (EOF) analysis and the Fast Fourier Transform(FFT) method. From the result of EOF analysis, the temporal and spatial variations of storm surge were described by the first mode of EOF, which is $73\%$ of the total variances during the passage of typhoon Brenda. From the results of FFT spectral analysis, the peak energy of the autospectrum for surge, atmospheric pressure, and wind stress appeared in the low frequency fluctuations band. The result of FFT analysis showed that the typhoon surge was related chiefly to the atmospheric pressure change in an open bay such as Cheju and Keomundo harbor, while it was influenced mainly by the wind stress in the semi-enclosed waters of Yeosu, Chungmu and Kadukdo.

  • PDF

Temporal and spatial analysis of SST and thermal fronts in the North East Asia Seas using NOAA/AVHRR data

  • Yoon, Hong-Joo
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.831-835
    • /
    • 2006
  • NOAA/AVHRR data were used to analyze sea surface temperatures (SSTs) and thermal fronts (TFs) in the Korean seas. Temporal and spatial analyses were based on data from 1993 to 2000. Harmonic analysis revealed mean SST distributions of $10{\sim}25^{\circ}C$. Annual amplitudes and phases were $4{\sim}11^{\circ}C$ and $210{\sim}240^{\circ}$, respectively. Inverse distributions of annual amplitudes and phases were found for the study seas, with the exception of the East China Sea, which is affected by the Kuroshio Current. Areas with high amplitudes (large variations in SSTs) showed 'low phases' (early maximum SST); areas with low amplitudes (small variations in SSTs) had 'high phases' (late maximum SST). Empirical orthogonal function (EOF) analyses of SSTs revealed a first-mode variance of 97.6%. Annually, greater SST variations occurred closer to the continent. Temporal components of the second mode showed higher values in 1993, 1994, and 1995. These phenomena seemed to the effect of El $Ni{\tilde{n}}o$. The Sobel edge detection method (SEDM) delineated four fronts: the Subpolar Front (SPF) separating the northern and southern parts of the East Sea; the Kuroshio Front (KF) in the East China Sea, the South Sea Coastal Front (SSCF) in the South Sea, and a tidal front (TDF) in the West Sea. Thermal fronts generally occurred over steep bathymetric slopes. Annual amplitudes and phases were bounded within these frontal areas. EOF analysis of SST gradient values revealed the temporal and spatial variations in the TFs. The SPF and SSCF were most intense in March and October; the KF was most significant in March and May.

  • PDF

Analysis of Characteristics of Satellite-derived Air Pollutant over Southeast Asia and Evaluation of Tropospheric Ozone using Statistical Methods (통계적 방법을 이용한 동남아시아지역 위성 대기오염물질 분석과 검증)

  • Baek, K.H.;Kim, Jae-Hwan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.650-662
    • /
    • 2011
  • The statistical tools such as empirical orthogonal function (EOF), and singular value decomposition (SVD) have been applied to analyze the characteristic of air pollutant over southeast Asia as well as to evaluate Zimeke's tropospheric column ozone (ZTO) determined by tropospheric residual method. In this study, we found that the EOF and SVD analyses are useful methods to extract the most significant temporal and spatial pattern from enormous amounts of satellite data. The EOF analyses with OMI $NO_2$ and OMI HCHO over southeast Asia revealed that the spatial pattern showed high correlation with fire count (r=0.8) and the EOF analysis of CO (r=0.7). This suggests that biomass burning influences a major seasonal variability on $NO_2$ and HCHO over this region. The EOF analysis of ZTO has indicated that the location of maximum ZTO was considerably shifted westward from the location of maximum of fire count and maximum month of ZTO occurred a month later than maximum month (March) of $NO_2$, HCHO and CO. For further analyses, we have performed the SVD analyses between ZTO and ozone precursor to examine their correlation and to check temporal and spatial consistency between two variables. The spatial pattern of ZTO showed latitudinal gradient that could result from latitudinal gradient of stratospheric ozone and temporal maximum of ZTO in March appears to be associated with stratospheric ozone variability that shows maximum in March. These results suggest that there are some sources of error in the tropospheric residual method associated with cloud height error, low efficiency of tropospheric ozone, and low accuracy in lower stratospheric ozone.

Temporal and spatial variations of SST and Ocean Fronts in the Korean Seas by Empirical Orthogonal Function (경험직교함수 분석에 의한 한반도 주변해역의 해수면온도 및 수온 전선의 시.공간 변화)

  • Yoon Hong-Joo;Byun Hye-Kyung
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.101-104
    • /
    • 2006
  • In the Korean seas, Sea Surface Temperature (SST) and Thermal Fronts (TF) were analyzed temporally and spatially during 8 years from 1993 to 2000 using NOAA/AVHRR MCSST. As the result of EOF method applying SST, the variance of the 1st mode was 97.6%. It is suitable to explain SST conditions in the whole Korean seas. Time coefficients were shown annual variations and spatial distributions were shown the closer to the continent the higher SST variations like as annual amplitudes. The 2nd mode presented higher time coefficients of 1993, 94, and 95 than those of other years. Although the influence is a little, that can explain ElNINO effect to the Korean seas. TF were detected by Sobel Edge Detection Method using gradient of SST. Consequently, TF were divided into 4 fronts; the Subpola. Front (SPF) dividing into the north and south part of the East sea, the Kuroshio Front (KF) in the East China Sea (ESC), the South Sea Coastal Front (SSCF) in the South sea, and the Tidal Front in the West sea. TF located in steep slope of submarine topography. The distributions of 1st mode in SST were bounded in the same place, and these results should be considered to influence of seasonal variations. To discover temporal and spatial variations of TF,SST gradient values were analyzed by EOF. The time coefficients fo the 1st mode (variance : 64.55%) showed distinctive annual variations and SPF, KF, and SSCF was significantly appeared in March. the spatial distributions of the 2nd mode showed contrast distribution, as SPF and SSCF had strong '-' value, where KF had strong '+' value. The time of '+' and '-' value was May and October, respectively. Time coefficients of the 3rd mode had 2 peaks per year and showed definite seasonal variations. SPF represented striking '+' value which time was March and October That was result reflected time of the 1st and 2nd mode. We can suggest specific temporal and spatial variations of TF using EOF.

  • PDF

Temporal and spatial variations of SST and Ocean Fronts in the Korean Seas by Empirical Orthogonal Function (경험 직교함수 분석에 의한 한반도 주변해역의 해수면온도 및 수온 전선의 시${\cdot}$공간 변화)

  • Yoon, Hong-Joo;Byun, Hye-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.397-402
    • /
    • 2005
  • In the Korean seas, Sea Surface Temperature (SST) and Thermal Fronts (TF) were analyzed temporally and spatially during 8 years from 1993 to 2000 using NOAA/AVHRR MCSST As the result of EOF method applying SST, the variance of the 1st mode was 97.6%. It is suitable to explain SST conditions in the whole Korean seas. Time coefficients were shown annual variations and spatial distributions were shown the closer to the continent the higher SST variations like as annual amplitudes. The 2nd mode presented higher time coefficients of 1993, 94, and 95 than those of other years. Although the influence is a little, that tan explain EININO effort to the Korean seas. TF were detected by Sobel Edge Detection Method using gradient of SST. Consequently, TF were divided into 4 fronts; the Subpolar Front (SPF) dividing into the north and south part of the East sea , the Kuroshio Front (KF) in the East China Sea (ESC), the South Sea Coastal Front (SSCF) in the South sea, and the Tidal Front in the West sea. TF located in steep slope of submarine topography. The distributions of 1st mode in SST were bounded in the same place, and these results should be considered to influence of seasonal variations. To discover temporal and spatial variations of TF, SST gradient values were analyzed by EOF. The time coefficients fo the 1st mode (variance : 64.55%) showed distinctive annual variations and SPF, KF, and SSCF was significantly appeared in March. the spatial distributions of the 2nd mode showed contrast distribution, as SPF and SSCF had strong'-'value, where KF had strong'+'value. The time of'+'and'-'value was May and October, respectively. Time coefficients of the 3rd mode had 2 peaks per year and showed definite seasonal variations. SPF represented striking'+'value which time was March and October. That was result reflected time of the 1st and 2nd mode. We can suggest specific temporal and spatial variations of TF using EOF.

  • PDF

Volume Transport on the Texas-Louisiana Continental Shelf

  • Cho Kwang-Woo
    • Fisheries and Aquatic Sciences
    • /
    • v.1 no.1
    • /
    • pp.48-62
    • /
    • 1998
  • Seasonal volume transport on the Texas-Louisiana continental shelf is investigated in terms of objectively fitted transport streamfunction fields based on the current meter data of the Texas­Louisiana Shelf Circulation and Transport Processes Study. Adopted here for the objective mapping is a method employing a two-dimensional truncated Fourier representation of the streamfunction over a domain, with the amplitudes determined by least square fit of the observation. The fitting was done with depth-averaged flow rather than depth-integrated flow to reduce the root-mean-square error. The fitting process filters out $11\%$ of the kinetic energy in the monthly mean transport fields. The shelf-wide pattern of streamfunction fields is similar to that of near-surface velocity fields over the region. The nearshore transport, about 0.1 to 0.3 Sv $(1 Sv= 10^6\;m^3/sec)$, is well correlated with the seasonal signal of along-shelf wind stress. The spring transport is weak compared to other seasons in the inner shelf region. The transport along the shelf break is large and variable. In the southwestern shelf break, transport amounts up to 4.7 Sv, which is associated with the activities of the encroaching of energetic anticyclonic eddies originated in Loop Current of the eastern Gulf of Mexico. The first empirical orthogonal function (EOF) of streamfunction variability contains $67.3\%$ of the variance and shows a simple, shelf-wide, along-shelf pattern of transport. The amplitude evolution of the first EOF is highly correlated (correlation coefficient: 0.88) with the evolution of the along-shelf wind stress. This provides strong evidence that the large portion of seasonal variation of the shelf transport is wind-forced. The second EOF contains $23.7\%$ of the variance and shows eddy activities at the southwestern shelf break. The correlation coefficient between the amplitudes of the second EOF and wind stress is 0.42. We assume that this mode is coupled a periodic inner shelf process with a non-periodic eddy process on the shelf break. The third EOF (accounting for $7.2\% of the variance) shows several cell structures near the shelf break associated with the variability of the Loop Current Eddies. The amplitude time series of the third EOF show little correlation with the along-shelf wind.

  • PDF

The Typhoon Surge in the Southern Coast of Korea (한국 남해안의 태풍에 의한 해일)

  • Jang, Seon-Deok;Lee, In-Cheol;Park, Cheol-Seok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.4
    • /
    • pp.293-302
    • /
    • 1991
  • The anomalous sea level deviation or storm surge caused by the typhoon Thelma in 1987 are studied analysing tidal observation data at 7 stations in the south coast of Korean peninsula. The surges are calculated by subtracting the predicted tidal height from the observed tidal record. The tidal deviation at these stations along the coast are discussed in association with meteorological data. The sea level anomalies are studied by means of the empirical orthogonal function (EOF) analysis and the fast fourier transform (FFT) method. The results of analysis suggest that the peak value of surges are higher at the tidal stations in semi-enclosed bay and in long narrow channel than at the ones facing with the open sea. From the result of EOF analysis, the temporal and spatial fluctuations of storm surge can be described by the first EOF mode, which explains 63% of the total variances during the passage of typhoon Thelma. The deviation of storm surge in the studied areas indicates bi-modal peak during the passage of typhoon Thelma. From the results of FFT spectrum analysis, the peak of energy of autospectrum for surge, atmospheric pressure, and wind stress appeared at low frequency fluctuations band of 0.008-0.076 cph over the 4 stations. Auto-correlation function of surge showed periodicity, while that of atmospheric pressure and wind stress indicates no periodicity. The result of FFT analysis shows that the typhoon surges are related chiefly with the change of atmospheric pressure in an open bay (Cheju Harbor), but with the wind stress in a semi-enclosed bay (Yeosu Harbor).

  • PDF

Downscaling of AMSR2 Sea Ice Concentration Using a Weighting Scheme Derived from MODIS Sea Ice Cover Product (MODIS 해빙피복 기반의 가중치체계를 이용한 AMSR2 해빙면적비의 다운스케일링)

  • Ahn, Jihye;Hong, Sungwook;Cho, Jaeil;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.687-701
    • /
    • 2014
  • Sea ice is generally accepted as an important factor to understand the process of earth climate changes and is the basis of earth system models for analysis and prediction of the climate changes. To continuously monitor sea ice changes at kilometer scale, it is demanded to create more accurate grid data from the current, limited sea ice data. In this paper we described a downscaling method for Advanced Microwave Scanning Radiometer 2 (AMSR2) Sea Ice Concentration (SIC) from 10 km to 1 km resolution using a weighting scheme of sea ice days ratio derived from Moderate Resolution Imaging Spectroradiometer (MODIS) sea ice cover product that has a high correlation with the SIC. In a case study for Okhotsk Sea, the sea ice areas of both data (before and after downscaling) were identical, and the monthly means and standard deviations of SIC exhibited almost the same values. Also, Empirical Orthogonal Function (EOF) analyses showed that three kinds of SIC data (ERA-Interim, original AMSR2, and downscaled AMSR2) had very similar principal components for spatial and temporal variations. Our method can apply to downscaling of other continuous variables in the form of ratio such as percentage and can contribute to monitoring small-scale changes of sea ice by providing finer SIC data.

A Study on Sea Water and Ocean Current in the Sea Adjacent to Korea Peninsula -The Vertical Structure of Temperatures in the East Sea of Korea- (한반도 근해의 해류 및 해수특성 -한국 동해의 수온의 수직구조-)

  • NA Jung-Yul;LEE Seong-Wook;CHO Kyu-Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.4
    • /
    • pp.215-228
    • /
    • 1991
  • In the East Sea of Korea the vertical structure functions of the temperature field were evaluated and the characteristic thermal zone was classified by the use of the empirical orthogonal function(EOF) method. The East Sea of Korea within the hydrographic lines of 10-107 of the Fisheries Research and Development Agency of Korea(FRDA) can be divided into three thermal regions by the characteristics of the vertical temperature variability. They are the North Korean Cold Current(NKCC) region near the coast which extends parallel to the north-south direction, the Warm-Core(WC) region which dominates almost all the hydrographic stations of the Line 104 of the FRDA and occupies a few stations of the Line-103 and -105 with its axis at the Line 104, and the East Korea Warm Current(EKWC) region which is bisected into the northern and the southern part by the WC region, respectively. Considering the two most important modes, $85.20-98.20\%$ of the total variance of temperature variation are explained in the NKCC region, $85.20-92.90\%$ in the EKWC region, and$85.50-91.70\%$ in the WC region. The first mode has its peak value at the surface with the annual cycle of variation. The spatial pattern of the first mode portrays a coherent vertical variation in the EKWC region and a clear anti-correlation both in the NKCC region and in the WC region where the zero-crossing depths are loom and 200m, respectively. The second mode of the NKCC region is particularly noticeable, haying its peak at loom with coherent vertical variation. To study the time dependency of the vertical structure functions, the extended EOF(EEOF) method was used. The persistence of the first mode is less than 4 months in the study area. The annual variation of the first mode in the NKCC region is different from those in the WC region and in the EKWC region.

  • PDF