• Title/Summary/Keyword: Empirical Mode Decomposition(EMD)

Search Result 70, Processing Time 0.029 seconds

Wear Detection in Gear System Using Hilbert-Huang Transform

  • Li, Hui;Zhang, Yuping;Zheng, Haiqi
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1781-1789
    • /
    • 2006
  • Fourier methods are not generally an appropriate approach in the investigation of faults signals with transient components. This work presents the application of a new signal processing technique, the Hilbert-Huang transform and its marginal spectrum, in analysis of vibration signals and faults diagnosis of gear. The Empirical mode decomposition (EMD), Hilbert-Huang transform (HHT) and marginal spectrum are introduced. Firstly, the vibration signals are separated into several intrinsic mode functions (IMFs) using EMD. Then the marginal spectrum of each IMF can be obtained. According to the marginal spectrum, the wear fault of the gear can be detected and faults patterns can be identified. The results show that the proposed method may provide not only an increase in the spectral resolution but also reliability for the faults diagnosis of the gear.

Analysis on Decomposition Models of Univariate Hydrologic Time Series for Multi-Scale Approach

  • Kwon, Hyun-Han;Moon, Young-Il;Shin, Dong-Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1450-1454
    • /
    • 2006
  • Empirical mode decomposition (EMD) is applied to analyze time series characterized with nonlinearity and nonstationarity. This decomposition could be utilized to construct finite and small number intrinsic mode functions (IMF) that describe complicated time series, while admitting the Hilbert transformation properties. EMD has the capability of being adaptive, capture local characteristics, and applicable to nonlinear and nonstationary processes. Unlike discrete wavelet transform (DWT), IMF eliminates spurious harmonics and retains meaningful instantaneous frequencies. Examples based on data representing natural phenomena are given to demonstrate highlight the power of this method in contrast and comparison of other ones. A presentation of the energy-frequency-time distribution of these signals found to be more informative and intuitive when based on Hilbert transformation.

  • PDF

Condition Monitoring of Low Speed Slewing Bearings Based on Ensemble Empirical Mode Decomposition Method

  • Caesarendra, W.;Park, J.H.;Choi, B.H.;Kosasih, P.B.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.388-393
    • /
    • 2012
  • Vibration condition monitoring at low rotational speeds is still a challenge. Acoustic emission (AE) is the most used technique when dealing with low speed bearings. At low rotational speeds, the energy induced from surface contact between raceway and rolling elements is very weak and sometimes buried by interference frequencies. This kind of issue is difficult to solve using vibration monitoring. Therefore some researchers utilize artificial damage on inner race or outer race to simplify the case. This paper presents vibration signal analysis of low speed slewing bearings running at a low rotational speed of 15 rpm. The natural damage data from industrial practice is used. The fault frequencies of bearings are difficult to identify using a power spectrum. Therefore the relatively improved method of empirical mode decomposition (EMD), ensemble EMD (EEMD) is employed. The result is can detect the fault frequencies when the FFT fail to do it.

  • PDF

Extraction of optimal time-varying mean of non-stationary wind speeds based on empirical mode decomposition

  • Cai, Kang;Li, Xiao;Zhi, Lun-hai;Han, Xu-liang
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.355-368
    • /
    • 2021
  • The time-varying mean (TVM) component of non-stationary wind speeds is commonly extracted utilizing empirical mode decomposition (EMD) in practice, whereas the accuracy of the extracted TVM is difficult to be quantified. To deal with this problem, this paper proposes an approach to identify and extract the optimal TVM from several TVM results obtained by the EMD. It is suggested that the optimal TVM of a 10-min time history of wind speeds should meet both the following conditions: (1) the probability density function (PDF) of fluctuating wind component agrees well with the modified Gaussian function (MGF). At this stage, a coefficient p is newly defined as an evaluation index to quantify the correlation between PDF and MGF. The smaller the p is, the better the derived TVM is; (2) the number of local maxima of obtained optimal TVM within a 10-min time interval is less than 6. The proposed approach is validated by a numerical example, and it is also adopted to extract the optimal TVM from the field measurement records of wind speeds collected during a sandstorm event.

Intrinsic Mode Function and its Orthogonality of the Ensemble Empirical Mode Decomposition Using Orthogonalization Method (직교화 기법을 이용한 앙상블 경험적 모드 분해법의 고유 모드 함수와 모드 직교성)

  • Shon, Sudeok;Ha, Junhong;Pokhrel, Bijaya P.;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.2
    • /
    • pp.101-108
    • /
    • 2019
  • In this paper, the characteristic of intrinsic mode function(IMF) and its orthogonalization of ensemble empirical mode decomposition(EEMD), which is often used in the analysis of the non-linear or non-stationary signal, has been studied. In the decomposition process, the orthogonal IMF of EEMD was obtained by applying the Gram-Schmidt(G-S) orthogonalization method, and was compared with the IMF of orthogonal EMD(OEMD). Two signals for comparison analysis are adopted as the analytical test function and El Centro seismic wave. These target signals were compared by calculating the index of orthogonality(IO) and the spectral energy of the IMF. As a result of the analysis, an IMF with a high IO was obtained by GSO method, and the orthogonal EEMD using white noise was decomposed into orthogonal IMF with energy closer to the original signal than conventional OEMD.

A Climate Prediction Method Based on EMD and Ensemble Prediction Technique

  • Bi, Shuoben;Bi, Shengjie;Chen, Xuan;Ji, Han;Lu, Ying
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • v.54 no.4
    • /
    • pp.611-622
    • /
    • 2018
  • Observed climate data are processed under the assumption that their time series are stationary, as in multi-step temperature and precipitation prediction, which usually leads to low prediction accuracy. If a climate system model is based on a single prediction model, the prediction results contain significant uncertainty. In order to overcome this drawback, this study uses a method that integrates ensemble prediction and a stepwise regression model based on a mean-valued generation function. In addition, it utilizes empirical mode decomposition (EMD), which is a new method of handling time series. First, a non-stationary time series is decomposed into a series of intrinsic mode functions (IMFs), which are stationary and multi-scale. Then, a different prediction model is constructed for each component of the IMF using numerical ensemble prediction combined with stepwise regression analysis. Finally, the results are fit to a linear regression model, and a short-term climate prediction system is established using the Visual Studio development platform. The model is validated using temperature data from February 1957 to 2005 from 88 weather stations in Guangxi, China. The results show that compared to single-model prediction methods, the EMD and ensemble prediction model is more effective for forecasting climate change and abrupt climate shifts when using historical data for multi-step prediction.

Empirical Mode Decomposition (EMD) and Nonstationary Oscillation Resampling (NSOR): II. Applications in Hydrology and Climate sciences

  • Lee, Tae-Sam;Ouarda, TahaB.M.J.;im, Byung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.91-91
    • /
    • 2011
  • In the present study, the proposed EMD and NSOR models has been applied in hydrology and climate sciences. Here, we present those applications as the following: (1) to extend future scenarios of Global Surface Temperature Anomaly including long-term oscillation component; (2) to extend the future evolution of the Eastern Canada winter precipitation; (3) to apply EMD in detecting climate change.

  • PDF

Investigating the performance of different decomposition methods in rainfall prediction from LightGBM algorithm

  • Narimani, Roya;Jun, Changhyun;Nezhad, Somayeh Moghimi;Parisouj, Peiman
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.150-150
    • /
    • 2022
  • This study investigates the roles of decomposition methods on high accuracy in daily rainfall prediction from light gradient boosting machine (LightGBM) algorithm. Here, empirical mode decomposition (EMD) and singular spectrum analysis (SSA) methods were considered to decompose and reconstruct input time series into trend terms, fluctuating terms, and noise components. The decomposed time series from EMD and SSA methods were used as input data for LightGBM algorithm in two hybrid models, including empirical mode-based light gradient boosting machine (EMDGBM) and singular spectrum analysis-based light gradient boosting machine (SSAGBM), respectively. A total of four parameters (i.e., temperature, humidity, wind speed, and rainfall) at a daily scale from 2003 to 2017 is used as input data for daily rainfall prediction. As results from statistical performance indicators, it indicates that the SSAGBM model shows a better performance than the EMDGBM model and the original LightGBM algorithm with no decomposition methods. It represents that the accuracy of LightGBM algorithm in rainfall prediction was improved with the SSA method when using multivariate dataset.

  • PDF

Motor Imagery EEG Classification Method using EMD and FFT (EMD와 FFT를 이용한 동작 상상 EEG 분류 기법)

  • Lee, David;Lee, Hee-Jae;Lee, Sang-Goog
    • Journal of KIISE
    • /
    • v.41 no.12
    • /
    • pp.1050-1057
    • /
    • 2014
  • Electroencephalogram (EEG)-based brain-computer interfaces (BCI) can be used for a number of purposes in a variety of industries, such as to replace body parts like hands and feet or to improve user convenience. In this paper, we propose a method to decompose and extract motor imagery EEG signal using Empirical Mode Decomposition (EMD) and Fast Fourier Transforms (FFT). The EEG signal classification consists of the following three steps. First, during signal decomposition, the EMD is used to generate Intrinsic Mode Functions (IMFs) from the EEG signal. Then during feature extraction, the power spectral density (PSD) is used to identify the frequency band of the IMFs generated. The FFT is used to extract the features for motor imagery from an IMF that includes mu rhythm. Finally, during classification, the Support Vector Machine (SVM) is used to classify the features of the motor imagery EEG signal. 10-fold cross-validation was then used to estimate the generalization capability of the given classifier., and the results show that the proposed method has an accuracy of 84.50% which is higher than that of other methods.

Development of 3D Image Processing Software using EMD for Ultrasonic NDE (EMD를 이용한 초음파 비파괴 평가용 3차원 영상처리 소프트웨어 개발)

  • Nam, Myung-Woo;Lee, Young-Seock;Yang, Ok-Yul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1569-1573
    • /
    • 2008
  • This paper describes a development of Ultrasonic NDE software to analyze steam generator of nuclear power plant. The developed software includes classical analysis method such as A, B, C and D-scan images. And it can analyze the detected internal cracks using 3D image processing method. To do such, we obtain raw data from specimens of real pipeline of power plants, and get the envelope signal using Empirical Mode Decomposition from obtained ultrasonic 1-dimensional data. The reconstructed 3D crack images offer useful information about the location, shape and size of cracks, even if there is no special 2D image analysis technique. The developed analysis software is applied to specimens containing various cracks with known dimensions. The results of application showed that the developed software provided accurate and enhanced 2D images and reconstructed 3D image of cracks.