This study aims to measure the emotional effects of pet plants, which have become popular in recent years. A questionnaire regarding perceptions of these indoor plants was administered to 78 university students. Thirty of these students took care of two species of pet plants for 90 days, and the emotional effects of this exercise were determined based on the type of words used in their daily records. The questionnaire results showed that the general recognition of emotional effects was low, though awareness of the term "pet plants" was high. However, after gardening for 90 days, participants began to consider their pet plants friends or family members, noting feelings of affection and sympathy in their daily writeups. These participants also experienced positive changes in their emotional well-being, including feelings of joy, hope, relaxation, confidence, and accomplishment. This study argues that pet plants can have positive effects on emotional stability and suggests that their adoption would be beneficial to humanity at large.
Journal of Information Technology Applications and Management
/
제21권3호
/
pp.65-77
/
2014
Ubiquitous learning has aroused great interest and is becoming a new way for foreign language education in today's society. However, how to increase the learners' initiative and their community cohesion is still an issue that deserves more profound research and studies. Emotional intelligence can help to detect the learner's emotional reactions online, and therefore stimulate his interest and the willingness to participate by adjusting teaching skills and creating fun experiences in learning. This is, actually the new concept of smart education. Based on the previous research, this paper concluded a neural mechanism model for analyzing the learners' emotional characteristics in ubiquitous environment, and discussed the intelligent monitoring and automatic recognition of emotions from the learners' speech signals as well as their behavior data by multi-agent system. Finally, a framework of emotional intelligence system was proposed concerning the smart foreign language education in ubiquitous learning.
본 연구는 간호학과 신입생의 정서지능이 대학생활적응에 미치는 영향력을 파악하기 위한 서술적 조사연구이다. 자료수집은 일개 대학교 간호학과 신입생 총 104명을 대상으로 하였다. 자료수집은 2012년 6월11일부터 13일까지 실시되었다. 수집된 자료는 SPSS 18.0프로그램을 이용하여 서술통계분석, 상관관계 및 다중회귀분석을 실시하였다. 본 연구결과 간호학과 신입생의 정서지능 정도는 평균 3.59(5점 만점), 대학생활적응 정도는 평균 3.01(5점 만점)으로 보통보다 높게 나타났다. 대상자의 정서지능은 대학생활적응과 유의한 상관관계를 나타내었다. 또한 정서지능이 대학생활적응에 15%의 설명력(F=4.629, $p=.001^{**}$)을 보였고, 정서지능의 하부영역 중 특히 유의한 영향을 미친 정서인식, 감정이입, 정서표현을 적용하여 다중회귀분석을 실시하였을 때 설명력이 16.2%(F=7.627, $p=.000^{**}$)로 증가하였다. 정서지능은 간호학과 신입생의 학업적응과 개인적 심리적 사회적으로 성공적인 대학생활적응에 필수적인 능력이라고 할 수 있다. 따라서 간호학과 신입생이 성공적인 대학생활적응을 할 수 있는 중요한 요소인 정서지능을 계발하고 향상시킬 수 있는 방안이 필요하다.
본 논문에서는 감정을 통해 단어의 의미가 변화될 때 운율과 음질로 표현되는 음향 요소가 어떠한 역할을 하는지 분석한다. 이를 위해 6명의 발화자에 의해 5가지 감정 상태로 표현된 60개의 데이터를 이용하여 감정에 따른 운율과 음질의 변화를 살펴본다. 감정에 따른 운율과 음질의 변화를 찾기 위해 8개의 음향 요소를 분석하였으며, 각 감정 상태를 표현하는 주요한 요소를 판별 해석을 통해 통계적으로 분석한다. 그 결과 화남의 감정은 음의 세기 및 2차 포먼트 대역너비와 깊은 연관이 있음을 확인할 수 있었고, 기쁨의 감정은 2차와 3차 포먼트 값 및 음의 세기와 연관이 있으며, 슬픔은 음질 보다는 주로 음의 세기와 높낮이 정보에 영향을 받는 것을 확인할 수 있었으며, 공포는 음의 높낮이와 2차 포먼트 값 및 그 대역너비와 깊은 관계가 있음을 알 수 있었다. 이러한 결과는 감정 음성 인식 시스템뿐만 아니라, 감정 음성 합성 시스템에서도 적극 활용될 수 있을 것으로 예상된다.
우울증에 대한 사회적 문제가 꾸준히 제기되는 것과 반대로 정신치료에 대한 부정적 인식 때문에 정신건강을 스스로 돌보는 이는 소수에 불과하다. 본 연구에서는 우울증을 방치하지 않도록 자동 감정인식 시스템을 도입한 애플리케이션의 서비스 디자인, 사용자 인터페이스 디자인을 제안한다. 먼저, 문헌 연구와 사례 분석을 통해 기존 앱의 사용성 개선사항을 도출하고, 청년을 대상으로 설문조사와 심층 인터뷰를 진행하여 우울증을 자각하지 못하고 있는 사용자에 대한 퍼소나를 제작하였다. 우울증 개선 서비스 디자인의 필수 요소로 다이어리 작성 권장, 아바타 관리를 통한 본인의 감정 상태 인지, 인지체계 개선을 위한 감정 포인트 추적기능을 제시한다. 본 제안을 통해 우울증의 발전을 방지하고, 우울증에 대한 인식변화와 경도 우울증을 스스로 해소할 수 있도록 돕고자 한다. 궁극적으로 정신건강 관리 애플리케이션 디자인의 필요성 확산과 정신치료를 위한 개인적, 사회적 비용을 낮출 수 있을 것으로 기대한다.
본 연구는 공감-체계화 유형, 얼굴제시영역, 정서유형에 따른 정서 인식과 정서 변별 간 관계를 알아보기 위하여 수행되었다. 실험 1에서는 개인의 공감-체계화 유형, 얼굴제시영역, 정서유형에 따라 정서 인식 정도가 어떻게 달라지는지 알아보았다. 그 결과 공감-체계화 유형에 따른 정서 인식 정도에는 유의미한 차이가 없었고, 얼굴제시영역과 정서유형에 따른 차이는 유의미하게 나타났다. 실험 2에서는 과제를 바꾸어 개인의 공감-체계화 유형, 얼굴제시영역, 정서유형에 따라 정서 변별 정도에 차이가 있는지 알아보았다. 그 결과 얼굴제시영역과 정서 유형에 따른 정서 변별 정도에 유의미한 차이가 있었다. 공감-체계화 유형과 정서유형 간 유의미한 상호작용이 있었는데, 기본정서에서는 공감-체계화 유형에 따른 변별 정도가 유의미한 차이를 보이지 않은 반면, 복합정서에서는 공감-체계화 유형 간 유의미한 차이를 보였다. 즉, 정서 인식과 달리 정서 변별에 있어서는 정서 유형에 따라 공감-체계화 유형 간 정확률에 차이가 나타났다. 이는 정서를 인식하는 것과 변별하는 것이 공감-체계화 유형에 따라 다르게 나타난다는 것을 보여준다. 본 연구를 통해 한 개인이 가지고 있는 공감하기와 체계화하기 특성, 얼굴제시영역, 정서유형이 정서인식과 정서 변별에 서로 다른 영향을 줄 수 있다는 것을 밝혔다.
This paper studied the speech parameters less affected by the human emotion for the development of the robust speech recognition system. For this purpose, the effect of emotion on the speech recognition system and robust speech parameters of speech recognition system were studied using speech database containing various emotions. In this study, mel-cepstral coefficient, delta-cepstral coefficient, RASTA mel-cepstral coefficient and frequency warped mel-cepstral coefficient were used as feature parameters. And CMS (Cepstral Mean Subtraction) method were used as a signal bias removal technique. Experimental results showed that the HMM based speaker independent word recognizer using vocal tract length normalized mel-cepstral coefficient, its derivatives and CMS as a signal bias removal showed the best performance of 0.78% word error rate. This corresponds to about a 50% word error reduction as compare to the performance of baseline system using mel-cepstral coefficient, its derivatives and CMS.
Journal of information and communication convergence engineering
/
제19권3호
/
pp.148-154
/
2021
With the advent of context-aware computing, many attempts were made to understand emotions. Among these various attempts, Speech Emotion Recognition (SER) is a method of recognizing the speaker's emotions through speech information. The SER is successful in selecting distinctive 'features' and 'classifying' them in an appropriate way. In this paper, the performances of SER using neural network models (e.g., fully connected network (FCN), convolutional neural network (CNN)) with Mel-Frequency Cepstral Coefficients (MFCC) are examined in terms of the accuracy and distribution of emotion recognition. For Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) dataset, by tuning model parameters, a two-dimensional Convolutional Neural Network (2D-CNN) model with MFCC showed the best performance with an average accuracy of 88.54% for 5 emotions, anger, happiness, calm, fear, and sadness, of men and women. In addition, by examining the distribution of emotion recognition accuracies for neural network models, the 2D-CNN with MFCC can expect an overall accuracy of 75% or more.
Emotion recognition is one of the most important and challenging areas of computer vision. Nowadays, many studies on emotion recognition were conducted and the performance of models is also improving. but, more research is needed on emotion recognition and sentiment analysis of video viewers. In this paper, we propose an emotion analysis system the includes a sentiment analysis model and an interest prediction model. We analyzed the emotional patterns of people watching popular and unpopular videos and predicted the level of interest using the emotion analysis system. Experimental results showed that certain emotions were strongly related to the popularity of videos and the interest prediction model had high accuracy in predicting the level of interest.
Facial expression recognition can aid in the development of fatigue driving detection, teaching quality evaluation, and other fields. In this study, a facial expression recognition method was proposed with a residual masking reconstruction network as its backbone to achieve more efficient expression recognition and classification. The residual layer was used to acquire and capture the information features of the input image, and the masking layer was used for the weight coefficients corresponding to different information features to achieve accurate and effective image analysis for images of different sizes. To further improve the performance of expression analysis, the loss function of the model is optimized from two aspects, feature dimension and data dimension, to enhance the accurate mapping relationship between facial features and emotional labels. The simulation results show that the ROC of the proposed method was maintained above 0.9995, which can accurately distinguish different expressions. The precision was 75.98%, indicating excellent performance of the facial expression recognition model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.