• Title/Summary/Keyword: Emotional memory

Search Result 152, Processing Time 0.016 seconds

The Effect of Consumers' Value Motives on the Perception of Blog Reviews Credibility: the Moderation Effect of Tie Strength (소비자의 가치 추구 동인이 블로그 리뷰의 신뢰성 지각에 미치는 영향: 유대강도에 따른 조절효과를 중심으로)

  • Chu, Wujin;Roh, Min Jung
    • Asia Marketing Journal
    • /
    • v.13 no.4
    • /
    • pp.159-189
    • /
    • 2012
  • What attracts consumers to bloggers' reviews? Consumers would be attracted both by the Bloggers' expertise (i.e., knowledge and experience) and by his/her unbiased manner of delivering information. Expertise and trustworthiness are both virtues of information sources, particularly when there is uncertainty in decision-making. Noting this point, we postulate that consumers' motives determine the relative weights they place on expertise and trustworthiness. In addition, our hypotheses assume that tie strength moderates consumers' expectation on bloggers' expertise and trustworthiness: with expectation on expertise enhanced for power-blog user-group (weak-ties), and an expectation on trustworthiness elevated for personal-blog user-group (strong-ties). Finally, we theorize that the effect of credibility on willingness to accept a review is moderated by tie strength; the predictive power of credibility is more prominent for the personal-blog user-groups than for the power-blog user groups. To support these assumptions, we conducted a field survey with blog users, collecting retrospective self-report data. The "gourmet shop" was chosen as a target product category, and obtained data analyzed by structural equations modeling. Findings from these data provide empirical support for our theoretical predictions. First, we found that the purposive motive aimed at satisfying instrumental information needs increases reliance on bloggers' expertise, but interpersonal connectivity value for alleviating loneliness elevates reliance on bloggers' trustworthiness. Second, expertise-based credibility is more prominent for power-blog user-groups than for personal-blog user-groups. While strong ties attract consumers with trustworthiness based on close emotional bonds, weak ties gain consumers' attention with new, non-redundant information (Levin & Cross, 2004). Thus, when the existing knowledge system, used in strong ties, does not work as smoothly for addressing an impending problem, the weak-tie source can be utilized as a handy reference. Thus, we can anticipate that power bloggers secure credibility by virtue of their expertise while personal bloggers trade off on their trustworthiness. Our analysis demonstrates that power bloggers appeal more strongly to consumers than do personal bloggers in the area of expertise-based credibility. Finally, the effect of review credibility on willingness to accept a review is higher for the personal-blog user-group than for the power-blog user-group. Actually, the inference that review credibility is a potent predictor of assessing willingness to accept a review is grounded on the analogy that attitude is an effective indicator of purchase intention. However, if memory about established attitudes is blocked, the predictive power of attitude on purchase intention is considerably diminished. Likewise, the effect of credibility on willingness to accept a review can be affected by certain moderators. Inspired by this analogy, we introduced tie strength as a possible moderator and demonstrated that tie strength moderated the effect of credibility on willingness to accept a review. Previously, Levin and Cross (2004) showed that credibility mediates strong-ties through receipt of knowledge, but this credibility mediation is not observed for weak-ties, where a direct path to it is activated. Thus, the predictive power of credibility on behavioral intention - that is, willingness to accept a review - is expected to be higher for strong-ties.

  • PDF

KNU Korean Sentiment Lexicon: Bi-LSTM-based Method for Building a Korean Sentiment Lexicon (Bi-LSTM 기반의 한국어 감성사전 구축 방안)

  • Park, Sang-Min;Na, Chul-Won;Choi, Min-Seong;Lee, Da-Hee;On, Byung-Won
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.219-240
    • /
    • 2018
  • Sentiment analysis, which is one of the text mining techniques, is a method for extracting subjective content embedded in text documents. Recently, the sentiment analysis methods have been widely used in many fields. As good examples, data-driven surveys are based on analyzing the subjectivity of text data posted by users and market researches are conducted by analyzing users' review posts to quantify users' reputation on a target product. The basic method of sentiment analysis is to use sentiment dictionary (or lexicon), a list of sentiment vocabularies with positive, neutral, or negative semantics. In general, the meaning of many sentiment words is likely to be different across domains. For example, a sentiment word, 'sad' indicates negative meaning in many fields but a movie. In order to perform accurate sentiment analysis, we need to build the sentiment dictionary for a given domain. However, such a method of building the sentiment lexicon is time-consuming and various sentiment vocabularies are not included without the use of general-purpose sentiment lexicon. In order to address this problem, several studies have been carried out to construct the sentiment lexicon suitable for a specific domain based on 'OPEN HANGUL' and 'SentiWordNet', which are general-purpose sentiment lexicons. However, OPEN HANGUL is no longer being serviced and SentiWordNet does not work well because of language difference in the process of converting Korean word into English word. There are restrictions on the use of such general-purpose sentiment lexicons as seed data for building the sentiment lexicon for a specific domain. In this article, we construct 'KNU Korean Sentiment Lexicon (KNU-KSL)', a new general-purpose Korean sentiment dictionary that is more advanced than existing general-purpose lexicons. The proposed dictionary, which is a list of domain-independent sentiment words such as 'thank you', 'worthy', and 'impressed', is built to quickly construct the sentiment dictionary for a target domain. Especially, it constructs sentiment vocabularies by analyzing the glosses contained in Standard Korean Language Dictionary (SKLD) by the following procedures: First, we propose a sentiment classification model based on Bidirectional Long Short-Term Memory (Bi-LSTM). Second, the proposed deep learning model automatically classifies each of glosses to either positive or negative meaning. Third, positive words and phrases are extracted from the glosses classified as positive meaning, while negative words and phrases are extracted from the glosses classified as negative meaning. Our experimental results show that the average accuracy of the proposed sentiment classification model is up to 89.45%. In addition, the sentiment dictionary is more extended using various external sources including SentiWordNet, SenticNet, Emotional Verbs, and Sentiment Lexicon 0603. Furthermore, we add sentiment information about frequently used coined words and emoticons that are used mainly on the Web. The KNU-KSL contains a total of 14,843 sentiment vocabularies, each of which is one of 1-grams, 2-grams, phrases, and sentence patterns. Unlike existing sentiment dictionaries, it is composed of words that are not affected by particular domains. The recent trend on sentiment analysis is to use deep learning technique without sentiment dictionaries. The importance of developing sentiment dictionaries is declined gradually. However, one of recent studies shows that the words in the sentiment dictionary can be used as features of deep learning models, resulting in the sentiment analysis performed with higher accuracy (Teng, Z., 2016). This result indicates that the sentiment dictionary is used not only for sentiment analysis but also as features of deep learning models for improving accuracy. The proposed dictionary can be used as a basic data for constructing the sentiment lexicon of a particular domain and as features of deep learning models. It is also useful to automatically and quickly build large training sets for deep learning models.