• 제목/요약/키워드: Emotion-Aware

검색결과 61건 처리시간 0.019초

모바일 어플리케이션의 감정 적응형 사용자 인터페이스 저작 프레임워크 (An Authoring Framework for Emotion-Aware User Interface of Mobile Applications)

  • 이은정;김규완;김우빈
    • 한국멀티미디어학회논문지
    • /
    • 제18권3호
    • /
    • pp.376-386
    • /
    • 2015
  • Since affective computing has been introduced in 90s, affect recognition technology has achieved substantial progress recently. However, the application of user emotion recognition into software user interface is in its early stages. In this paper, we describe a new approach for developing mobile user interface which could react differently depending on user emotion states. First, an emotion reaction model is presented which determines user interface reactions for each emotional state. We introduce a pair of mappings from user states to different user interface versions. The reacting versions are implemented by a set of variations for a view. Further, we present an authoring framework to help developers/designers to create emotion-aware reactions based on the proposed emotion reaction model. The authoring framework is necessary to alleviate the burden of creating and handling multi versions for views at the development process. A prototype implementation is presented as an extension of the existing authoring tool DAT4UX. Moreover, a proof-of-concept application featuring an emotion-aware interface is developed using the tool.

Multimodal Attention-Based Fusion Model for Context-Aware Emotion Recognition

  • Vo, Minh-Cong;Lee, Guee-Sang
    • International Journal of Contents
    • /
    • 제18권3호
    • /
    • pp.11-20
    • /
    • 2022
  • Human Emotion Recognition is an exciting topic that has been attracting many researchers for a lengthy time. In recent years, there has been an increasing interest in exploiting contextual information on emotion recognition. Some previous explorations in psychology show that emotional perception is impacted by facial expressions, as well as contextual information from the scene, such as human activities, interactions, and body poses. Those explorations initialize a trend in computer vision in exploring the critical role of contexts, by considering them as modalities to infer predicted emotion along with facial expressions. However, the contextual information has not been fully exploited. The scene emotion created by the surrounding environment, can shape how people perceive emotion. Besides, additive fusion in multimodal training fashion is not practical, because the contributions of each modality are not equal to the final prediction. The purpose of this paper was to contribute to this growing area of research, by exploring the effectiveness of the emotional scene gist in the input image, to infer the emotional state of the primary target. The emotional scene gist includes emotion, emotional feelings, and actions or events that directly trigger emotional reactions in the input image. We also present an attention-based fusion network, to combine multimodal features based on their impacts on the target emotional state. We demonstrate the effectiveness of the method, through a significant improvement on the EMOTIC dataset.

모바일 환경에서의 상황인식 기반 사용자 감성인지를 통한 개인화 서비스 (Personalized Service Based on Context Awareness through User Emotional Perception in Mobile Environment)

  • 권일경;이상용
    • 디지털융복합연구
    • /
    • 제10권2호
    • /
    • pp.287-292
    • /
    • 2012
  • 본 논문에서는 모바일환경에서의 사용자 감정인지를 통한 개인화 서비스 지원에 필요한 위치기반 센싱 데이터의 전처리 기법과 사용자 감정 데이터의 구축 및 전처리를 위한 V-A 감정 모델에서의 감정 데이터 전처리 기법에 대하여 연구한다. 이를 위하여 그래뉼러 컨텍스트 트리 및 스트링 매칭 기반의 감정 패턴 매칭 기법을 사용한다. 또한 상황 인지를 통한 개인화 서비스를 위해 확률 기반 추론을 이용한 상황 인식 및 개인화 서비스 추천 기법에 대하여 연구한다.

User adaptive media selection based on agent communication

  • Nunokawa, Hiroshi;Ogasawara, Naohito;Sato, Kiwamu;Suguri, Hiroki
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2000년도 춘계 학술대회 및 국제 감성공학 심포지움 논문집 Proceeding of the 2000 Spring Conference of KOSES and International Sensibility Ergonomics Symposium
    • /
    • pp.179-183
    • /
    • 2000
  • By spread of Internet, we become to use several of communication such as email, ICQ, VoIP etc. But as become convenient to use, user must be aware of variety of information regarding the media and partner user. The forecast is that this problem grows larger and larger as new media are brought in the expanding communications network. In this research, we suggest an agent MIA (Media Integration Agent) that manages the information instead of user. The MIA is an agent that obtains situation of user, and dynamically exchanged addresses and tendency of using medias in form of vCard. By use of this, user can choose better communication media. Accordingly seamless communication environment that user doesn't have to be aware of various information is formed.

  • PDF

Speech Emotion Recognition Using 2D-CNN with Mel-Frequency Cepstrum Coefficients

  • Eom, Youngsik;Bang, Junseong
    • Journal of information and communication convergence engineering
    • /
    • 제19권3호
    • /
    • pp.148-154
    • /
    • 2021
  • With the advent of context-aware computing, many attempts were made to understand emotions. Among these various attempts, Speech Emotion Recognition (SER) is a method of recognizing the speaker's emotions through speech information. The SER is successful in selecting distinctive 'features' and 'classifying' them in an appropriate way. In this paper, the performances of SER using neural network models (e.g., fully connected network (FCN), convolutional neural network (CNN)) with Mel-Frequency Cepstral Coefficients (MFCC) are examined in terms of the accuracy and distribution of emotion recognition. For Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) dataset, by tuning model parameters, a two-dimensional Convolutional Neural Network (2D-CNN) model with MFCC showed the best performance with an average accuracy of 88.54% for 5 emotions, anger, happiness, calm, fear, and sadness, of men and women. In addition, by examining the distribution of emotion recognition accuracies for neural network models, the 2D-CNN with MFCC can expect an overall accuracy of 75% or more.

사용자 감정 예측을 통한 상황인지 추천시스템의 개선 (Improvement of a Context-aware Recommender System through User's Emotional State Prediction)

  • 안현철
    • Journal of Information Technology Applications and Management
    • /
    • 제21권4호
    • /
    • pp.203-223
    • /
    • 2014
  • This study proposes a novel context-aware recommender system, which is designed to recommend the items according to the customer's responses to the previously recommended item. In specific, our proposed system predicts the user's emotional state from his or her responses (such as facial expressions and movements) to the previous recommended item, and then it recommends the items that are similar to the previous one when his or her emotional state is estimated as positive. If the customer's emotional state on the previously recommended item is regarded as negative, the system recommends the items that have characteristics opposite to the previous item. Our proposed system consists of two sub modules-(1) emotion prediction module, and (2) responsive recommendation module. Emotion prediction module contains the emotion prediction model that predicts a customer's arousal level-a physiological and psychological state of being awake or reactive to stimuli-using the customer's reaction data including facial expressions and body movements, which can be measured using Microsoft's Kinect Sensor. Responsive recommendation module generates a recommendation list by using the results from the first module-emotion prediction module. If a customer shows a high level of arousal on the previously recommended item, the module recommends the items that are most similar to the previous item. Otherwise, it recommends the items that are most dissimilar to the previous one. In order to validate the performance and usefulness of the proposed recommender system, we conducted empirical validation. In total, 30 undergraduate students participated in the experiment. We used 100 trailers of Korean movies that had been released from 2009 to 2012 as the items for recommendation. For the experiment, we manually constructed Korean movie trailer DB which contains the fields such as release date, genre, director, writer, and actors. In order to check if the recommendation using customers' responses outperforms the recommendation using their demographic information, we compared them. The performance of the recommendation was measured using two metrics-satisfaction and arousal levels. Experimental results showed that the recommendation using customers' responses (i.e. our proposed system) outperformed the recommendation using their demographic information with statistical significance.

BCI에서 EEG 기반 효율적인 감정 분류를 위한 LSTM 하이퍼파라미터 최적화 (LSTM Hyperparameter Optimization for an EEG-Based Efficient Emotion Classification in BCI)

  • ;;임창균
    • 한국전자통신학회논문지
    • /
    • 제14권6호
    • /
    • pp.1171-1180
    • /
    • 2019
  • 감정은 인간의 상호 작용에서 중요한 역할을 하는 심리 생리학적 과정이다. 감성 컴퓨팅은 감정을 이해하고 조절할 수 있는 인간 인지 인공 지능의 개발하는데 중점을 둔다. 우울증, 자폐증, 주의력 결핍 과잉 행동 장애 및 게임 중독과 같은 정신 질환이 감정과 관련되어 있기 때문에 이러한 분야의 연구가 중요하다. 감정 인식에 대한 노력에도 불구하고, 비정상적인 EEG 신호로부터의 감정 검출은 여전히 높은 수준의 추상화를 요구하기에 정교한 학습 알고리즘이 필요하다. 이 논문에서는 EEG 기반으로 효율적인 감정 분류를 위해 LSTM을 위한 최적의 하이퍼파라미터를 파악하고자 다양한 실험을 수행하여 이를 분석한 결과를 제시하였다.

멀티 모달 감정인식 시스템 기반 상황인식 서비스 추론 기술 개발 (Development of Context Awareness and Service Reasoning Technique for Handicapped People)

  • 고광은;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제19권1호
    • /
    • pp.34-39
    • /
    • 2009
  • 사람의 감정은 주관적인 인식 작용으로서 충동적인 성향을 띄고 있으며 무의식중의 사람의 욕구와 의도를 표현하고 있다. 이는 유비쿼터스 컴퓨팅 환경이나 지능형 로봇의 사용자가 처한 환경의 상황정보 중에서 사용자의 의도를 가장 많이 포함하고 있는 정보라고 할 수 있다. 이러한 사용자의 감정을 파악할 수 있는 지표는 사람의 얼굴 영상에서의 표정과 음성신호에서의 Spectrum 통계치 및 생체신호(근전위, 뇌파, 등)등 이다. 본 논문에서는 감정인식 활용의 편의와 효율성 향상을 주목적으로 하여 사용자의 얼굴 영상과 음성을 이용한 감정인식에 대하여 개별 결과물만을 산출하고 그 인식률을 검토한다. 또한 임의의 상황에서의 인식률 향상을 위하여 영상과 음성의 특징을 기반으로 최적의 특징 정보들을 구별해 내고, 각각의 개별 감정 특징에 대한 융합을 시도하는 특징 융합 기반의 Multi-Modal 감정인식 기법을 구현한다. 최종적으로 감정인식 결과를 이용하여 유비쿼터스 컴퓨팅 환경에서 발생 가능한 상황 설정 시나리오와 베이지만 네트워크를 통해 유비쿼터스 컴퓨팅 서비스의 확률 추론 가능성을 제시하고자 한다.

생체신호를 이용한 감정인지시스템의 설계 및 구현 (Design and Implementation of an Emotion Recognition System using Physiological Signal)

  • 오지수;강정진;임명재;이기영
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권1호
    • /
    • pp.57-62
    • /
    • 2010
  • 최근에 모바일 시장에서는 시각과 청각, 촉각에 의존하여 상대방에게 의사를 전달하는 기술이 발전되고 있지만, 인간이 의사소통을 하는데 있어서 시각 촉각 청각 후각 미각인 오감의 요소를 필요로 한다. 그러므로 본 논문에서는 음성과 체온, 맥박 같은 생체신호를 통하여 감정을 인지하고 향기가 나는 모바일 기기를 사용하여 상대방에게 의사를 전달 할 때 오감의 요소 중 후각적인 요소를 접목하였다. 또한 사용자 감정의 변화에 따라 적절한 향기를 발산하도록 하여 사용자의 감정을 컨트롤 할 수 있는 시스템을 설계하고 구현하였다.

LSTM/RNN을 사용한 감정인식을 위한 스택 오토 인코더로 EEG 차원 감소 (EEG Dimensional Reduction with Stack AutoEncoder for Emotional Recognition using LSTM/RNN)

  • ;임창균
    • 한국전자통신학회논문지
    • /
    • 제15권4호
    • /
    • pp.717-724
    • /
    • 2020
  • 감성 컴퓨팅은 인간의 상호 작용에서 중요한 역할을 하기 때문에 인간을 인식하는 인공 지능을 통해 감정을 이해하고 식별한다. 우울증, 자폐증, 주의력 결핍 과잉 행동 장애 및 게임 중독과 같은 정신 질환을 잘 이해함으로써 감정과 관련된 문제들을 잘 관리할 수 있을 것이다. 이러한 문제들을 해결하기 위해 감정 인식을 위한 다양한 연구가 수행되었는데 기계학습을 적용하는데 있어서는 알고리즘의 복잡성을 줄이고 정확도를 향상시키기 위한 노력이 필요하다. 본 논문에서는 이러한 노력중의 하나로 Stack AutoEncoder (SAE)를 이용하여 차원을 감소하는 방법과 Long-Short-Term-Memory/Recurrent Neural Networks (LSTM / RNN) 분류를 이용한 감성 분류에 대해 연구한 결과를 제시한다. 제안된 방법은 모델의 복잡성을 줄이고 분류기의 성능을 크게 향상시킨 결과를 가져왔다.