• Title/Summary/Keyword: Emotion recognition

Search Result 653, Processing Time 0.028 seconds

Multimodal Attention-Based Fusion Model for Context-Aware Emotion Recognition

  • Vo, Minh-Cong;Lee, Guee-Sang
    • International Journal of Contents
    • /
    • v.18 no.3
    • /
    • pp.11-20
    • /
    • 2022
  • Human Emotion Recognition is an exciting topic that has been attracting many researchers for a lengthy time. In recent years, there has been an increasing interest in exploiting contextual information on emotion recognition. Some previous explorations in psychology show that emotional perception is impacted by facial expressions, as well as contextual information from the scene, such as human activities, interactions, and body poses. Those explorations initialize a trend in computer vision in exploring the critical role of contexts, by considering them as modalities to infer predicted emotion along with facial expressions. However, the contextual information has not been fully exploited. The scene emotion created by the surrounding environment, can shape how people perceive emotion. Besides, additive fusion in multimodal training fashion is not practical, because the contributions of each modality are not equal to the final prediction. The purpose of this paper was to contribute to this growing area of research, by exploring the effectiveness of the emotional scene gist in the input image, to infer the emotional state of the primary target. The emotional scene gist includes emotion, emotional feelings, and actions or events that directly trigger emotional reactions in the input image. We also present an attention-based fusion network, to combine multimodal features based on their impacts on the target emotional state. We demonstrate the effectiveness of the method, through a significant improvement on the EMOTIC dataset.

Half-Against-Half Multi-class SVM Classify Physiological Response-based Emotion Recognition

  • Vanny, Makara;Ko, Kwang-Eun;Park, Seung-Min;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.3
    • /
    • pp.262-267
    • /
    • 2013
  • The recognition of human emotional state is one of the most important components for efficient human-human and human- computer interaction. In this paper, four emotions such as fear, disgust, joy, and neutral was a main problem of classifying emotion recognition and an approach of visual-stimuli for eliciting emotion based on physiological signals of skin conductance (SC), skin temperature (SKT), and blood volume pulse (BVP) was used to design the experiment. In order to reach the goal of solving this problem, half-against-half (HAH) multi-class support vector machine (SVM) with Gaussian radial basis function (RBF) kernel was proposed showing the effective techniques to improve the accuracy rate of emotion classification. The experimental results proved that the proposed was an efficient method for solving the emotion recognition problems with the accuracy rate of 90% of neutral, 86.67% of joy, 85% of disgust, and 80% of fear.

Prototype of Emotion Recognition System for Treatment of Autistic Spectrum Disorder (자폐증 치료를 위한 감성인지 시스템 프로토타입)

  • Chung, Seong Youb
    • Journal of Institute of Convergence Technology
    • /
    • v.1 no.2
    • /
    • pp.1-5
    • /
    • 2011
  • It is known that as many as 15-20 in 10,000 children are diagnosed with autistic spectrum disorder. A framework of the treatment system for children with autism using affective computing technologies was proposed by Chung and Yoon. In this paper, a prototype for the framework is proposed. It consists of emotion stimulating module, multi-modal bio-signal sensing module, treatment module using virtual reality, and emotion recognition module. Primitive experiments on emotion recognition show the usefulness of the proposed system.

  • PDF

Emotion Recognition using Prosodic Feature Vector and Gaussian Mixture Model (운율 특성 벡터와 가우시안 혼합 모델을 이용한 감정인식)

  • Kwak, Hyun-Suk;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.762-766
    • /
    • 2002
  • This paper describes the emotion recognition algorithm using HMM(Hidden Markov Model) method. The relation between the mechanic system and the human has just been unilateral so far. This is the why people don't want to get familiar with multi-service robots of today. If the function of the emotion recognition is granted to the robot system, the concept of the mechanic part will be changed a lot. Pitch and Energy extracted from the human speech are good and important factors to classify the each emotion (neutral, happy, sad and angry etc.), which are called prosodic features. HMM is the powerful and effective theory among several methods to construct the statistical model with characteristic vector which is made up with the mixture of prosodic features

  • PDF

Speech emotion recognition using attention mechanism-based deep neural networks (주목 메커니즘 기반의 심층신경망을 이용한 음성 감정인식)

  • Ko, Sang-Sun;Cho, Hye-Seung;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.6
    • /
    • pp.407-412
    • /
    • 2017
  • In this paper, we propose a speech emotion recognition method using a deep neural network based on the attention mechanism. The proposed method consists of a combination of CNN (Convolution Neural Networks), GRU (Gated Recurrent Unit), DNN (Deep Neural Networks) and attention mechanism. The spectrogram of the speech signal contains characteristic patterns according to the emotion. Therefore, we modeled characteristic patterns according to the emotion by applying the tuned Gabor filters as convolutional filter of typical CNN. In addition, we applied the attention mechanism with CNN and FC (Fully-Connected) layer to obtain the attention weight by considering context information of extracted features and used it for emotion recognition. To verify the proposed method, we conducted emotion recognition experiments on six emotions. The experimental results show that the proposed method achieves higher performance in speech emotion recognition than the conventional methods.

The interaction between emotion recognition through facial expression based on cognitive user-centered television (이용자 중심의 얼굴 표정을 통한 감정 인식 TV의 상호관계 연구 -인간의 표정을 통한 감정 인식기반의 TV과 인간의 상호 작용 연구)

  • Lee, Jong-Sik;Shin, Dong-Hee
    • Journal of the HCI Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.23-28
    • /
    • 2014
  • In this study we focus on the effect of the interaction between humans and reactive television when emotion recognition through facial expression mechanism is used. Most of today's user interfaces in electronic products are passive and are not properly fitted into users' needs. In terms of the user centered device, we propose that the emotion based reactive television is the most effective in interaction compared to other passive input products. We have developed and researched next generation cognitive TV models in user centered. In this paper we present a result of the experiment that had been taken with Fraunhofer IIS $SHORE^{TM}$ demo software version to measure emotion recognition. This new approach was based on the real time cognitive TV models and through this approach we studied the relationship between humans and cognitive TV. This study follows following steps: 1) Cognitive TV systems can be on automatic ON/OFF mode responding to motions of people 2) Cognitive TV can directly select channels as face changes (ex, Neutral Mode and Happy Mode, Sad Mode, Angry Mode) 3) Cognitive TV can detect emotion recognition from facial expression of people within the fixed time and then if Happy mode is detected the programs of TV would be shifted into funny or interesting shows and if Angry mode is detected it would be changed to moving or touching shows. In addition, we focus on improving the emotion recognition through facial expression. Furthermore, the improvement of cognition TV based on personal characteristics is needed for the different personality of users in human to computer interaction. In this manner, the study on how people feel and how cognitive TV responds accordingly, plus the effects of media as cognitive mechanism will be thoroughly discussed.

Difference in reading facial expressions as the empathy-systemizing type - focusing on emotional recognition and emotional discrimination - (공감-체계화 유형에 따른 얼굴 표정 읽기의 차이 - 정서읽기와 정서변별을 중심으로 -)

  • Tae, Eun-Ju;Cho, Kyung-Ja;Park, Soo-Jin;Han, Kwang-Hee;Ghim, Hei-Rhee
    • Science of Emotion and Sensibility
    • /
    • v.11 no.4
    • /
    • pp.613-628
    • /
    • 2008
  • Mind reading is an essential part of normal social functioning and empathy plays a key role in social understanding. This study investigated how individual differences can have an effect on reading emotions in facial expressions, focusing on empathizing and systemizing. Two experiments were conducted. In study 1, participants performed emotion recognition test using facial expressions to investigate how emotion recognition can be different as empathy-systemizing type, facial areas, and emotion type. Study 2 examined how emotion recognition can be different as empathy-systemizing type, facial areas, and emotion type. An emotion discrimination test was used instead, with every other condition the same as in studies 1. Results from study 2 showed mostly same results as study 1: there were significant differences among facial areas and emotion type and also have an interaction effect between facial areas and emotion type. On the other hand, there was an interaction effect between empathy-systemizing type and emotion type in study 2. That is, how much people empathize and systemize can make difference in emotional discrimination. These results suggested that the empathy-systemizing type was more appropriate to explain emotion discrimination than emotion recognition.

  • PDF

GMM-based Emotion Recognition Using Speech Signal (음성 신호를 사용한 GMM기반의 감정 인식)

  • 서정태;김원구;강면구
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.235-241
    • /
    • 2004
  • This paper studied the pattern recognition algorithm and feature parameters for speaker and context independent emotion recognition. In this paper, KNN algorithm was used as the pattern matching technique for comparison, and also VQ and GMM were used for speaker and context independent recognition. The speech parameters used as the feature are pitch. energy, MFCC and their first and second derivatives. Experimental results showed that emotion recognizer using MFCC and its derivatives showed better performance than that using the pitch and energy parameters. For pattern recognition algorithm. GMM-based emotion recognizer was superior to KNN and VQ-based recognizer.

Adaptive Speech Emotion Recognition Framework Using Prompted Labeling Technique (프롬프트 레이블링을 이용한 적응형 음성기반 감정인식 프레임워크)

  • Bang, Jae Hun;Lee, Sungyoung
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.2
    • /
    • pp.160-165
    • /
    • 2015
  • Traditional speech emotion recognition techniques recognize emotions using a general training model based on the voices of various people. These techniques can not consider personalized speech character exactly. Therefore, the recognized results are very different to each person. This paper proposes an adaptive speech emotion recognition framework made from user's' immediate feedback data using a prompted labeling technique for building a personal adaptive recognition model and applying it to each user in a mobile device environment. The proposed framework can recognize emotions from the building of a personalized recognition model. The proposed framework was evaluated to be better than the traditional research techniques from three comparative experiment. The proposed framework can be applied to healthcare, emotion monitoring and personalized service.

Audio and Video Bimodal Emotion Recognition in Social Networks Based on Improved AlexNet Network and Attention Mechanism

  • Liu, Min;Tang, Jun
    • Journal of Information Processing Systems
    • /
    • v.17 no.4
    • /
    • pp.754-771
    • /
    • 2021
  • In the task of continuous dimension emotion recognition, the parts that highlight the emotional expression are not the same in each mode, and the influences of different modes on the emotional state is also different. Therefore, this paper studies the fusion of the two most important modes in emotional recognition (voice and visual expression), and proposes a two-mode dual-modal emotion recognition method combined with the attention mechanism of the improved AlexNet network. After a simple preprocessing of the audio signal and the video signal, respectively, the first step is to use the prior knowledge to realize the extraction of audio characteristics. Then, facial expression features are extracted by the improved AlexNet network. Finally, the multimodal attention mechanism is used to fuse facial expression features and audio features, and the improved loss function is used to optimize the modal missing problem, so as to improve the robustness of the model and the performance of emotion recognition. The experimental results show that the concordance coefficient of the proposed model in the two dimensions of arousal and valence (concordance correlation coefficient) were 0.729 and 0.718, respectively, which are superior to several comparative algorithms.