• 제목/요약/키워드: Emotion Tree

검색결과 28건 처리시간 0.032초

텍스트 분류 기법의 발전 (Enhancement of Text Classification Method)

  • 신광성;신성윤
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.155-156
    • /
    • 2019
  • Classification and Regression Tree (CART), SVM (Support Vector Machine) 및 k-nearest neighbor classification (kNN)과 같은 기존 기계 학습 기반 감정 분석 방법은 정확성이 떨어졌습니다. 본 논문에서는 개선 된 kNN 분류 방법을 제안한다. 개선 된 방법 및 데이터 정규화를 통해 정확성 향상의 목적이 달성됩니다. 그 후, 3 가지 분류 알고리즘과 개선 된 알고리즘을 실험 데이터에 기초하여 비교 하였다.

  • PDF

효과적 이모션마이닝을 위한 속성선택 방법에 관한 연구 (Exploring Feature Selection Methods for Effective Emotion Mining)

  • 어균선;이건창
    • 디지털융복합연구
    • /
    • 제17권3호
    • /
    • pp.107-117
    • /
    • 2019
  • 블로그, 소셜 미디어 등의 발달로 인해 점점 더 많은 사람들이 본인의 의견이나 감정을 표현하기 위해 온라인상에서 텍스트 문장을 작성한다. 그리고 이같은 온라인 텍스트 문장속에 숨겨져 있는 긍정 또는 부정등의 감성을 찾아내는 연구분야를 감성분석 이라고 한다. 그중에서도 이모션 마이닝은 사람들의 구체적인 이모션을 찾아내는데 초점을 맞춘 연구분야이다. 본 연구에서는 속성선택 방법과 단일 및 앙상블 분류기를 조합하여 효과적인 이모션 마이닝 예측모델을 제시하고자 한다. 이를 위해 두가지 대표적인 오픈 데이터인 Tweet와 SemEval2007 데이터를 이용하여 TF-IDF를 계산하고 백 오브 워즈(BOW: bag-of-words) 형태로 속성 셋을 구성하였다. 그리고 효과적인 이모션 마이닝이 될 수 있는 최적의 속성을 선택하기 위하여 상관관계 기반 속성선택(CFS), 정보획득 속성선택 (IG), 그리고 ReliefF 등 세가지 속성선택 방법을 적용하였다. 선택된 속성을 이용하여 아홉가지 분류기 모델로 이모션 마이닝의 정확도를 비교하였다. 실험 결과, Tweet 데이터는 의사결정나무(DT)가 CFS, IG, ReliefF에 의한 속성을 이용할 경우 정확도가 상승했고, 랜덤서브스페이스(RS)는 CFS, IG에 선택된 속성을 사용할 경우 정확도가 상승했다. SemEval2007 데이터는 ReliefF에 의해 선택된 속성으로 로지스틱 회귀분석(LR)을 적용하였을 때 정확도가 상승했고, 나이브 베이지안 네트워크(NBN)은 CFS, IG에 의한 속성을 사용할 경우 정확도가 상승하였다.

열다한소탕과 태음조위탕·조위승청탕의 소증 분석을 위한 의사결정나무 구성 (The Decision Tree to Analyze the Cases' Ordinary Symptoms Prescribed Yeoldahanso-tang and Taeeumjowi-tang·Choweseuncheng-tang)

  • 김상혁;박만영;이시우
    • 사상체질의학회지
    • /
    • 제29권3호
    • /
    • pp.248-261
    • /
    • 2017
  • Objectives The purpose of this study is to analyze the decision making process of prescribing Yeoldahanso-tang and Taeeumjowi-tang Choweseuncheng-tang using decision tree. Methods We used collected the prospective clinical data of TE type from September 2012 to July 2015. In this study, we used gender, BMI, blood pressure, pulse and clinical symptoms (digestion, sweat, defecation, urination, sleep, physical status, emotion, heat-coldness, water consumption, facial color) as variables. Decision trees were analyzed using open source R version 3.3.2. Results & Conclusions We found that the decision trees differed among institutions. However, in all institutions, it was found that stool type (ordinary symptom), urine frequency (ordinary and present symptom) and anxiety (ordinary symptom) were important in the decision of prescription. Besides, clinical informations such as sex, Body Mass Index and blood pressure affected the prescription decision.

HIERARCHICAL CLUSTER ANALYSIS by arboART NEURAL NETWORKS and its APPLICATION to KANSEI EVALUATION DATA ANALYSIS

  • Ishihara, Shigekazu;Ishihara, Keiko;Nagamachi, Mitsuo
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2002년도 춘계학술대회 논문집
    • /
    • pp.195-200
    • /
    • 2002
  • ART (Adaptive Resonance Theory [1]) neural network and its variations perform non-hierarchical clustering by unsupervised learning. We propose a scheme "arboART" for hierarchical clustering by using several ART1.5-SSS networks. It classifies multidimensional vectors as a cluster tree, and finds features of clusters. The Basic idea of arboART is to use the prototype formed in an ART network as an input to other ART network that has looser distance criteria (Ishihara, et al., [2,3]). By sending prototype vectors made by ART to one after another, many small categories are combined into larger and more generalized categories. We can draw a dendrogram using classification records of sample and categories. We have confirmed its ability using standard test data commonly used in pattern recognition community. The clustering result is better than traditional computing methods, on separation of outliers, smaller error (diameter) of clusters and causes no chaining. This methodology is applied to Kansei evaluation experiment data analysis.

  • PDF

편백나무로 제작된 힐링 침대에서의 색체 자극이 스트레스 완화에 미치는 효과 (The Effect of Stress Reduction on Color Stimulus Using Healing Bed in Cypress Tree)

  • 신선혜;유미;오승용;김주리;송의선;문명철;임승택;박희준;권대규
    • 재활복지공학회논문지
    • /
    • 제10권2호
    • /
    • pp.163-170
    • /
    • 2016
  • 본 연구에서는 삼림욕을 즐기는 것과 같은 편안한 상태의 휴식을 유도하기 위하여 편백나무를 이용하여 힐링 침대 시스템과 색체자극을 위한 LED 감성 모듈을 개발하였고, 8가지 조명과 3가지 색온도의 색체 자극에 따른 휴식이 스트레스 완화에 미치는 효과를 비교 분석하였다. 피험자는 건강한 20대 성인 남여 7명(age $23.3{\pm}0.7yr$; height $165{\pm};10cm$ body mass $59{\pm}10kg$)을 대상으로 하였으며, 8가지 색상(red, orange, yellow, green, blue, indigo, violet, white)과 3가지 색온도(3,000K, 5,000K, 8,000K)에 따른 휴식 시 심박변이도, 피험자의 주관적 인지평가를 진행하였다. 그 결과, 심박변이도의 경우 한색계열인 green, blue, indigo의 조명과 3000K의 낮은 온도 조명이 부교감신경을 활성화시켜 심리적으로 안정되는 결과를 얻었으며, 피험자가 주관적으로 느끼는 인지시간의 결과 동일 시간을 자극받았을 지라도 green 색상과 3,000K 온도 자극 시 인지 시간이 가장 느렸으며, 감성어휘 평가에서는 orange 색상과 3,000K온도에서 가장 높은 점수를 얻었다. 따라서, 본 연구 결과 3,000K의 낮은 온도자극과 green 색상 자극 시 심리정 안정이 가장 높은 결과를 얻었으며, 추후 연구에서는 작업 환경에 따른 조명 자극 시 피로도 회복과 뇌파 변화를 비교 분석 할 것이다.

CAD를 활용한 데이 마케팅에 의한 넥타이 디자인 연구 - 크리스마스를 중심으로 - (A Study on the Necktie Design to Day Marketing using CAD - Focused on Christmas -)

  • 추미경
    • 복식문화연구
    • /
    • 제18권4호
    • /
    • pp.640-654
    • /
    • 2010
  • The purpose of this study is to design neckties that are motivated by Christmas symbol images that have been known to public most widely in the basis of Day marketing so as to develop the competitive commodities closed to consumers' emotion in the fashion industry. As a method of this study were to use Adobe Illustrator CS2, which is one of the vector graphic programs, to present the motif design such as Santa Claus, trees, presents and letters among Christmas symbols, and are to apply to neckties by giving a change with striped pattern, all over pattern and one point pattern. The results are as follows; Firstly, Santa Claus image was expressed by color contrast with red and white, which was perceived by red, green and white that are mostly used in Christmas. Secondly, tree images are expressed abstractly with color contrast where red and green are contrasted, and color way change was given for symbol color of Christmas. Third, in the image of gift, the image of share and image of colorfulness were considered for expression by making motifs of three dimensional hexahedron shape. Fourthly, in the image of type, motif was expressed by giving a change in horizontal and vertical writing types.

애니메이션의 샷밀도 몽타주 패턴 (The Shot Density Montage Pattern for Annimation)

  • 신연우
    • 한국멀티미디어학회논문지
    • /
    • 제25권4호
    • /
    • pp.620-627
    • /
    • 2022
  • This study analyzed the shot pattern through the tempo of segmented shot duration and studied the relationship with the unique emotion of the story. The structure of the story was classified into 3 chapters, 17 sequences, 83 scenes, 287 beats, and 1636 shots. Shot density is a method of visualizing tension in visual storytelling, and since it is a result obtained by mathematically calculating the density of divided shots, it can be helpful in designing tension delivered to the audience. Nine shot density patterns were extracted. The ascending(+) type was classified as A, B, C, D, 4, the descending(-) type, E, F, G, H, 4, and the maintenance(/) type, I, 1 type. Based on the spatiality of the 17 stages of Campbell's heroic narrative and McGee's story structure, the narrative level of the tree structure was proposed, and the symbolic meaning of the shot rhythm in the practical aspect of the story function was proposed to present a systematic methodology in the direction of production.

감성 분류를 위한 워드 임베딩 성능 비교 (Performance Comparison of Word Embeddings for Sentiment Classification)

  • 윤혜진;구자환;김응모
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.760-763
    • /
    • 2021
  • 텍스트를 자연어 처리를 위한 모델에 적용할 수 있게 언어적인 특성을 반영해서 단어를 수치화하는 방법 중 단어를 벡터로 표현하여 나타내는 워드 임베딩은 컴퓨터가 인간의 언어를 이해하고 분석 가능한 언어 모델의 필수 요소가 되었다. Word2vec 등 다양한 워드 임베딩 기법이 제안되었고 자연어를 처리할 때에 감성 분류는 중요한 요소이지만 다양한 임베딩 기법에 따른 감성 분류 모델에 대한 성능 비교 연구는 여전히 부족한 실정이다. 본 논문에서는 Emotion-stimulus 데이터를 활용하여 7가지의 감성과 2가지의 감성을 5가지의 임베딩 기법과 3종류의 분류 모델로 감성 분류 학습을 진행하였다. 감성 분류를 위해 Logistic Regression, Decision Tree, Random Forest 모델 등과 같은 보편적으로 많이 사용하는 머신러닝 분류 모델을 사용하였으며, 각각의 결과를 훈련 정확도와 테스트 정확도로 비교하였다. 실험 결과, 7가지 감성 분류 및 2가지 감성 분류 모두 사전훈련된 Word2vec가 대체적으로 우수한 정확도 성능을 보였다.

장기적 금연 지속기간 예측 모형: 스트레스 대처를 중심으로 (Decision-Tree Model of Long-term Abstention from Smoking: Focused on Coping Styles)

  • 서경현;유제민
    • 보건교육건강증진학회지
    • /
    • 제22권4호
    • /
    • pp.73-90
    • /
    • 2005
  • Objectives: Smokers who had failed to quit smoking were frequently reported that life stress mostly interrupted their abstention. Stress vulnerability model for smoking cessation has been considered, and most of contemporary smoking cessation programs help smokers develop coping strategies for stressful situations. This study aims to investigate the appropriate coping styles for stress of abstention from smoking. The result of investigating the relationship between abstention following smoking cessation program and coping styles would suggest useful information for those who want to stop smoking and health practitioners who help them. Methods: Participants were 69 smokers (62 males, 7 females) participated in a hospitalized smoking cessation program, whose mean age was 44.89 (SD=9.61). Participants took medical test and completed questionnaires and psychological tests including: Fagerstrom Test for Nicotine Dependence and Multidimensional Coping Scale. To identify participants' abstention, researchers followed them for 2 years. To identify whether abstained or not and encourage them to abstain, researchers called them on the telephone once a week for 3 months. After 3 months, they were contacted every other week till 6 months passed since they left smoking cessation program. And they were contacted once a month for other 18months. Researchers also contacted their family to identify their abstention. Data Mining Decision Tree was performed with 37 variables (13 variables for the coping styles and 24 smoking-related variables) by Answer Tree 3.0v Results: Forty four (63.8%) out of sixty nine for 2 weeks, 34 (49.3%) for 6 months, 25 (36.2%) abstained for 1 year, and 22 (31.9%) abstained for 2 years. Participants of this study abstained average of 286.77 days from smoking. Included variables of a Decision Tree model for this study were positive interpretation, emotional expression, self-criticism, restraint and emotional social support seeking. Decision Tree model showed that those (n=9) who did not interpret positively (<=7.5) and criticized themselves (>6.5) abstained 23 days only, while those (n=9) who interpreted positively (>7.5), expressed their emotion freely (>6.5), and sought social support actively (>11.5) abstained 730 days, till last day of the investigation. Conclusion: The results of this study showed that certain coping styles such as positive interpretation, emotional expression, self-criticism, restraint and emotional social support seeking were important factors for long-term abstention from smoking. These findings reiterate the role of stress for abstention from smoking and suggest a model of coping styles for successful abstention from smoking. Despite of limitation of this study, it might help smokers who want to stop smoking and health practitioners who help them.

Classifying Social Media Users' Stance: Exploring Diverse Feature Sets Using Machine Learning Algorithms

  • Kashif Ayyub;Muhammad Wasif Nisar;Ehsan Ullah Munir;Muhammad Ramzan
    • International Journal of Computer Science & Network Security
    • /
    • 제24권2호
    • /
    • pp.79-88
    • /
    • 2024
  • The use of the social media has become part of our daily life activities. The social web channels provide the content generation facility to its users who can share their views, opinions and experiences towards certain topics. The researchers are using the social media content for various research areas. Sentiment analysis, one of the most active research areas in last decade, is the process to extract reviews, opinions and sentiments of people. Sentiment analysis is applied in diverse sub-areas such as subjectivity analysis, polarity detection, and emotion detection. Stance classification has emerged as a new and interesting research area as it aims to determine whether the content writer is in favor, against or neutral towards the target topic or issue. Stance classification is significant as it has many research applications like rumor stance classifications, stance classification towards public forums, claim stance classification, neural attention stance classification, online debate stance classification, dialogic properties stance classification etc. This research study explores different feature sets such as lexical, sentiment-specific, dialog-based which have been extracted using the standard datasets in the relevant area. Supervised learning approaches of generative algorithms such as Naïve Bayes and discriminative machine learning algorithms such as Support Vector Machine, Naïve Bayes, Decision Tree and k-Nearest Neighbor have been applied and then ensemble-based algorithms like Random Forest and AdaBoost have been applied. The empirical based results have been evaluated using the standard performance measures of Accuracy, Precision, Recall, and F-measures.