Classification and Regression Tree (CART), SVM (Support Vector Machine) 및 k-nearest neighbor classification (kNN)과 같은 기존 기계 학습 기반 감정 분석 방법은 정확성이 떨어졌습니다. 본 논문에서는 개선 된 kNN 분류 방법을 제안한다. 개선 된 방법 및 데이터 정규화를 통해 정확성 향상의 목적이 달성됩니다. 그 후, 3 가지 분류 알고리즘과 개선 된 알고리즘을 실험 데이터에 기초하여 비교 하였다.
블로그, 소셜 미디어 등의 발달로 인해 점점 더 많은 사람들이 본인의 의견이나 감정을 표현하기 위해 온라인상에서 텍스트 문장을 작성한다. 그리고 이같은 온라인 텍스트 문장속에 숨겨져 있는 긍정 또는 부정등의 감성을 찾아내는 연구분야를 감성분석 이라고 한다. 그중에서도 이모션 마이닝은 사람들의 구체적인 이모션을 찾아내는데 초점을 맞춘 연구분야이다. 본 연구에서는 속성선택 방법과 단일 및 앙상블 분류기를 조합하여 효과적인 이모션 마이닝 예측모델을 제시하고자 한다. 이를 위해 두가지 대표적인 오픈 데이터인 Tweet와 SemEval2007 데이터를 이용하여 TF-IDF를 계산하고 백 오브 워즈(BOW: bag-of-words) 형태로 속성 셋을 구성하였다. 그리고 효과적인 이모션 마이닝이 될 수 있는 최적의 속성을 선택하기 위하여 상관관계 기반 속성선택(CFS), 정보획득 속성선택 (IG), 그리고 ReliefF 등 세가지 속성선택 방법을 적용하였다. 선택된 속성을 이용하여 아홉가지 분류기 모델로 이모션 마이닝의 정확도를 비교하였다. 실험 결과, Tweet 데이터는 의사결정나무(DT)가 CFS, IG, ReliefF에 의한 속성을 이용할 경우 정확도가 상승했고, 랜덤서브스페이스(RS)는 CFS, IG에 선택된 속성을 사용할 경우 정확도가 상승했다. SemEval2007 데이터는 ReliefF에 의해 선택된 속성으로 로지스틱 회귀분석(LR)을 적용하였을 때 정확도가 상승했고, 나이브 베이지안 네트워크(NBN)은 CFS, IG에 의한 속성을 사용할 경우 정확도가 상승하였다.
Objectives The purpose of this study is to analyze the decision making process of prescribing Yeoldahanso-tang and Taeeumjowi-tang Choweseuncheng-tang using decision tree. Methods We used collected the prospective clinical data of TE type from September 2012 to July 2015. In this study, we used gender, BMI, blood pressure, pulse and clinical symptoms (digestion, sweat, defecation, urination, sleep, physical status, emotion, heat-coldness, water consumption, facial color) as variables. Decision trees were analyzed using open source R version 3.3.2. Results & Conclusions We found that the decision trees differed among institutions. However, in all institutions, it was found that stool type (ordinary symptom), urine frequency (ordinary and present symptom) and anxiety (ordinary symptom) were important in the decision of prescription. Besides, clinical informations such as sex, Body Mass Index and blood pressure affected the prescription decision.
ART (Adaptive Resonance Theory [1]) neural network and its variations perform non-hierarchical clustering by unsupervised learning. We propose a scheme "arboART" for hierarchical clustering by using several ART1.5-SSS networks. It classifies multidimensional vectors as a cluster tree, and finds features of clusters. The Basic idea of arboART is to use the prototype formed in an ART network as an input to other ART network that has looser distance criteria (Ishihara, et al., [2,3]). By sending prototype vectors made by ART to one after another, many small categories are combined into larger and more generalized categories. We can draw a dendrogram using classification records of sample and categories. We have confirmed its ability using standard test data commonly used in pattern recognition community. The clustering result is better than traditional computing methods, on separation of outliers, smaller error (diameter) of clusters and causes no chaining. This methodology is applied to Kansei evaluation experiment data analysis.
본 연구에서는 삼림욕을 즐기는 것과 같은 편안한 상태의 휴식을 유도하기 위하여 편백나무를 이용하여 힐링 침대 시스템과 색체자극을 위한 LED 감성 모듈을 개발하였고, 8가지 조명과 3가지 색온도의 색체 자극에 따른 휴식이 스트레스 완화에 미치는 효과를 비교 분석하였다. 피험자는 건강한 20대 성인 남여 7명(age $23.3{\pm}0.7yr$; height $165{\pm};10cm$ body mass $59{\pm}10kg$)을 대상으로 하였으며, 8가지 색상(red, orange, yellow, green, blue, indigo, violet, white)과 3가지 색온도(3,000K, 5,000K, 8,000K)에 따른 휴식 시 심박변이도, 피험자의 주관적 인지평가를 진행하였다. 그 결과, 심박변이도의 경우 한색계열인 green, blue, indigo의 조명과 3000K의 낮은 온도 조명이 부교감신경을 활성화시켜 심리적으로 안정되는 결과를 얻었으며, 피험자가 주관적으로 느끼는 인지시간의 결과 동일 시간을 자극받았을 지라도 green 색상과 3,000K 온도 자극 시 인지 시간이 가장 느렸으며, 감성어휘 평가에서는 orange 색상과 3,000K온도에서 가장 높은 점수를 얻었다. 따라서, 본 연구 결과 3,000K의 낮은 온도자극과 green 색상 자극 시 심리정 안정이 가장 높은 결과를 얻었으며, 추후 연구에서는 작업 환경에 따른 조명 자극 시 피로도 회복과 뇌파 변화를 비교 분석 할 것이다.
The purpose of this study is to design neckties that are motivated by Christmas symbol images that have been known to public most widely in the basis of Day marketing so as to develop the competitive commodities closed to consumers' emotion in the fashion industry. As a method of this study were to use Adobe Illustrator CS2, which is one of the vector graphic programs, to present the motif design such as Santa Claus, trees, presents and letters among Christmas symbols, and are to apply to neckties by giving a change with striped pattern, all over pattern and one point pattern. The results are as follows; Firstly, Santa Claus image was expressed by color contrast with red and white, which was perceived by red, green and white that are mostly used in Christmas. Secondly, tree images are expressed abstractly with color contrast where red and green are contrasted, and color way change was given for symbol color of Christmas. Third, in the image of gift, the image of share and image of colorfulness were considered for expression by making motifs of three dimensional hexahedron shape. Fourthly, in the image of type, motif was expressed by giving a change in horizontal and vertical writing types.
This study analyzed the shot pattern through the tempo of segmented shot duration and studied the relationship with the unique emotion of the story. The structure of the story was classified into 3 chapters, 17 sequences, 83 scenes, 287 beats, and 1636 shots. Shot density is a method of visualizing tension in visual storytelling, and since it is a result obtained by mathematically calculating the density of divided shots, it can be helpful in designing tension delivered to the audience. Nine shot density patterns were extracted. The ascending(+) type was classified as A, B, C, D, 4, the descending(-) type, E, F, G, H, 4, and the maintenance(/) type, I, 1 type. Based on the spatiality of the 17 stages of Campbell's heroic narrative and McGee's story structure, the narrative level of the tree structure was proposed, and the symbolic meaning of the shot rhythm in the practical aspect of the story function was proposed to present a systematic methodology in the direction of production.
텍스트를 자연어 처리를 위한 모델에 적용할 수 있게 언어적인 특성을 반영해서 단어를 수치화하는 방법 중 단어를 벡터로 표현하여 나타내는 워드 임베딩은 컴퓨터가 인간의 언어를 이해하고 분석 가능한 언어 모델의 필수 요소가 되었다. Word2vec 등 다양한 워드 임베딩 기법이 제안되었고 자연어를 처리할 때에 감성 분류는 중요한 요소이지만 다양한 임베딩 기법에 따른 감성 분류 모델에 대한 성능 비교 연구는 여전히 부족한 실정이다. 본 논문에서는 Emotion-stimulus 데이터를 활용하여 7가지의 감성과 2가지의 감성을 5가지의 임베딩 기법과 3종류의 분류 모델로 감성 분류 학습을 진행하였다. 감성 분류를 위해 Logistic Regression, Decision Tree, Random Forest 모델 등과 같은 보편적으로 많이 사용하는 머신러닝 분류 모델을 사용하였으며, 각각의 결과를 훈련 정확도와 테스트 정확도로 비교하였다. 실험 결과, 7가지 감성 분류 및 2가지 감성 분류 모두 사전훈련된 Word2vec가 대체적으로 우수한 정확도 성능을 보였다.
Objectives: Smokers who had failed to quit smoking were frequently reported that life stress mostly interrupted their abstention. Stress vulnerability model for smoking cessation has been considered, and most of contemporary smoking cessation programs help smokers develop coping strategies for stressful situations. This study aims to investigate the appropriate coping styles for stress of abstention from smoking. The result of investigating the relationship between abstention following smoking cessation program and coping styles would suggest useful information for those who want to stop smoking and health practitioners who help them. Methods: Participants were 69 smokers (62 males, 7 females) participated in a hospitalized smoking cessation program, whose mean age was 44.89 (SD=9.61). Participants took medical test and completed questionnaires and psychological tests including: Fagerstrom Test for Nicotine Dependence and Multidimensional Coping Scale. To identify participants' abstention, researchers followed them for 2 years. To identify whether abstained or not and encourage them to abstain, researchers called them on the telephone once a week for 3 months. After 3 months, they were contacted every other week till 6 months passed since they left smoking cessation program. And they were contacted once a month for other 18months. Researchers also contacted their family to identify their abstention. Data Mining Decision Tree was performed with 37 variables (13 variables for the coping styles and 24 smoking-related variables) by Answer Tree 3.0v Results: Forty four (63.8%) out of sixty nine for 2 weeks, 34 (49.3%) for 6 months, 25 (36.2%) abstained for 1 year, and 22 (31.9%) abstained for 2 years. Participants of this study abstained average of 286.77 days from smoking. Included variables of a Decision Tree model for this study were positive interpretation, emotional expression, self-criticism, restraint and emotional social support seeking. Decision Tree model showed that those (n=9) who did not interpret positively (<=7.5) and criticized themselves (>6.5) abstained 23 days only, while those (n=9) who interpreted positively (>7.5), expressed their emotion freely (>6.5), and sought social support actively (>11.5) abstained 730 days, till last day of the investigation. Conclusion: The results of this study showed that certain coping styles such as positive interpretation, emotional expression, self-criticism, restraint and emotional social support seeking were important factors for long-term abstention from smoking. These findings reiterate the role of stress for abstention from smoking and suggest a model of coping styles for successful abstention from smoking. Despite of limitation of this study, it might help smokers who want to stop smoking and health practitioners who help them.
International Journal of Computer Science & Network Security
/
제24권2호
/
pp.79-88
/
2024
The use of the social media has become part of our daily life activities. The social web channels provide the content generation facility to its users who can share their views, opinions and experiences towards certain topics. The researchers are using the social media content for various research areas. Sentiment analysis, one of the most active research areas in last decade, is the process to extract reviews, opinions and sentiments of people. Sentiment analysis is applied in diverse sub-areas such as subjectivity analysis, polarity detection, and emotion detection. Stance classification has emerged as a new and interesting research area as it aims to determine whether the content writer is in favor, against or neutral towards the target topic or issue. Stance classification is significant as it has many research applications like rumor stance classifications, stance classification towards public forums, claim stance classification, neural attention stance classification, online debate stance classification, dialogic properties stance classification etc. This research study explores different feature sets such as lexical, sentiment-specific, dialog-based which have been extracted using the standard datasets in the relevant area. Supervised learning approaches of generative algorithms such as Naïve Bayes and discriminative machine learning algorithms such as Support Vector Machine, Naïve Bayes, Decision Tree and k-Nearest Neighbor have been applied and then ensemble-based algorithms like Random Forest and AdaBoost have been applied. The empirical based results have been evaluated using the standard performance measures of Accuracy, Precision, Recall, and F-measures.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.