• 제목/요약/키워드: Emotion Pattern

검색결과 252건 처리시간 0.022초

감성 인식을 위한 강화학습 기반 상호작용에 의한 특징선택 방법 개발 (Reinforcement Learning Method Based Interactive Feature Selection(IFS) Method for Emotion Recognition)

  • 박창현;심귀보
    • 제어로봇시스템학회논문지
    • /
    • 제12권7호
    • /
    • pp.666-670
    • /
    • 2006
  • This paper presents the novel feature selection method for Emotion Recognition, which may include a lot of original features. Specially, the emotion recognition in this paper treated speech signal with emotion. The feature selection has some benefits on the pattern recognition performance and 'the curse of dimension'. Thus, We implemented a simulator called 'IFS' and those result was applied to a emotion recognition system(ERS), which was also implemented for this research. Our novel feature selection method was basically affected by Reinforcement Learning and since it needs responses from human user, it is called 'Interactive feature Selection'. From performing the IFS, we could get 3 best features and applied to ERS. Comparing those results with randomly selected feature set, The 3 best features were better than the randomly selected feature set.

2D 얼굴 영상을 이용한 로봇의 감정인식 및 표현시스템 (Emotion Recognition and Expression System of Robot Based on 2D Facial Image)

  • 이동훈;심귀보
    • 제어로봇시스템학회논문지
    • /
    • 제13권4호
    • /
    • pp.371-376
    • /
    • 2007
  • This paper presents an emotion recognition and its expression system of an intelligent robot like a home robot or a service robot. Emotion recognition method in the robot is used by a facial image. We use a motion and a position of many facial features. apply a tracking algorithm to recognize a moving user in the mobile robot and eliminate a skin color of a hand and a background without a facial region by using the facial region detecting algorithm in objecting user image. After normalizer operations are the image enlarge or reduction by distance of the detecting facial region and the image revolution transformation by an angel of a face, the mobile robot can object the facial image of a fixing size. And materialize a multi feature selection algorithm to enable robot to recognize an emotion of user. In this paper, used a multi layer perceptron of Artificial Neural Network(ANN) as a pattern recognition art, and a Back Propagation(BP) algorithm as a learning algorithm. Emotion of user that robot recognized is expressed as a graphic LCD. At this time, change two coordinates as the number of times of emotion expressed in ANN, and change a parameter of facial elements(eyes, eyebrows, mouth) as the change of two coordinates. By materializing the system, expressed the complex emotion of human as the avatar of LCD.

음향적 요소분석과 DRNN을 이용한 음성신호의 감성 인식 (Analyzing the Acoustic Elements and Emotion Recognition from Speech Signal Based on DRNN)

  • 심귀보;박창현;주영훈
    • 한국지능시스템학회논문지
    • /
    • 제13권1호
    • /
    • pp.45-50
    • /
    • 2003
  • 최근 인간형 로봇에 대한 개발이 괄목할 만한 성장을 이루고 있고, 친근한 로봇의 개발에 중요한 역할을 담당하는 것으로써 감성/감정의 인식이 필수적이라는 인식이 확산되고 있나. 본 논문은 음성의 감정인식에 있어 가장 큰 부분을 차지하는 피치의 패턴을 인식하여 감정을 분류/인식하는 시뮬레이터의 개발과 시뮬레이션 결과를 나타낸다. 또한, 피치뿐 아니라 음향학적으로 날카로움, 낮음 등의 요소를 분류의 기준으로 포함시켜서 좀더 신뢰성 있는 인식을 할 수 있음을 보인다. 주파수와 음성의 다양한 분석을 통하여, 음향적 요소와 감성의 상관관계에 대한 분석이 선행되어야 하므로, 본 논문은 사람들의 음성을 녹취하여 분석하였다 시뮬레이터의 내부 구조로는 음성으로부터 피치를 추출하는 부분과 피치의 패턴을 학습시키는 DRNN 부분으로 이루어져 있다.

감정단어 발화 시 억양 패턴을 반영한 멜로디 특성 (Tonal Characteristics Based on Intonation Pattern of the Korean Emotion Words)

  • 이수연;오재혁;정현주
    • 인간행동과 음악연구
    • /
    • 제13권2호
    • /
    • pp.67-83
    • /
    • 2016
  • 본 연구는 감정단어의 억양 패턴을 음향학적으로 분석하여 멜로디의 음높이 패턴으로 전환한 뒤 그 특성을 알아보았다. 이를 위해 만 19-23세 여성 30명을 대상으로 기쁨, 화남, 슬픔을 표현하는 4음절 감정단어의 음성자료를 수집하였다. 총 180개의 어휘를 수집하고 Praat 프로그램을 이용하여 음절 당 평균 주파수(f0)를 측정한 후 평균 음정과 음높이 패턴의 멜로디 요소로 전환하였다. 연구 결과, 첫째, 감정단어의 음높이 패턴은 '즐거워서' A3-A3-G3-G3, '즐거워요' G4-G4-F4-F4, '행복해서' C4-D4-B3-A3, '행복해요' D4-D4-A3-G3, '억울해서' G3-A3-G3-G3, '억울해요' G3-G3-G3-A3, F3-G3-E3-D3, '불안해서' A3-A3-G3-A3, '불안해요' A3-G3-F3-F3, '침울해서' C4-C4-A3-G3, '침울해요' A3-A3-F3-F3으로 나타났다. 둘째, 음 진행에서는 기쁨이 넓은 간격의 도약 진행, 화남이 좁은 간격의 도약 진행, 슬픔이 넓은 간격의 순차 진행 특성을 보였다. 본 연구에서는 감정의 속성과 본질, 한국어의 음성 특성을 고려하여 감정단어의 억양 패턴을 분석하고, 이를 멜로디 요소에 반영한 특성을 제시하였다. 또한, 체계적이고 객관화된 방법으로 말과 멜로디의 전환 가능성 및 적합성을 확인한 것에 의의가 있다. 본 연구의 결과는 감정을 효과적으로 표현할 수 있는 멜로디 창작 방안을 마련하기 위한 근거 자료로 활용될 수 있다.

신경망을 이용한 텍스타일 영상에서의 감성인식 시스템 (Emotion Recognition System Using Neural Networks in Textile Images)

  • 김나연;신윤희;김수정;김지인;정갑주;구현진;김은이
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권9호
    • /
    • pp.869-879
    • /
    • 2007
  • 본 논문에서는 신경망을 이용하여 텍스타일 영상으로부터 인간의 감성을 인식할 수 있는 시스템을 제안한다. 자동감성인식 시스템의 구현을 위해 220장의 텍스타일 영상을 수집한 후, 일반인 20명을 대상으로 설문조사를 실시하였다. 이를 통해 텍스타일 영상에서의 패턴과 감성간의 상관관계, 즉 특정 패턴이 사람의 감성에 영향을 준다는 것을 발견하였다. 따라서 본 연구에서는 텍스타일 영상에 포함된 패턴의 인식을 위해 신경망을 이용하였으며, 이때 패턴 정보의 추출을 위해 두 가지 특징 추출 방법을 사용한다. 첫 번째는 auto-regressive method를 이용한 raw-pixel data extraction scheme(RDES)을 사용하는 것이고, 두 번째는 wavelet transformed data extraction scheme(WTDES)을 사용하는 것이다. 제안된 시스템의 유용성을 증명하기 위해서 실제 100장의 텍스타일 영상을 감성을 인식하는데 사용했다. 그 결과 RDES와 WTDES를 사용했을 때 각각 71%와 90%의 인식률로, WTDES를 사용했을 때가 RDES를 사용했을 때보다 더 좋은 성능을 보였다. 데이타 추출방법에 따라 다소 차이가 있었지만 전체적으로 약 81%의 정확도를 보였다. 이러한 실험 결과는 제안된 방법이 감성인식 기반으로 텍스타일 데이타를 검색 할 수 있는 시스템 및 다양한 산업 분야에 응용 가능함을 보여주었다.

모의 지능로봇에서의 음성 감정인식 (Speech Emotion Recognition on a Simulated Intelligent Robot)

  • 장광동;김남;권오욱
    • 대한음성학회지:말소리
    • /
    • 제56호
    • /
    • pp.173-183
    • /
    • 2005
  • We propose a speech emotion recognition method for affective human-robot interface. In the Proposed method, emotion is classified into 6 classes: Angry, bored, happy, neutral, sad and surprised. Features for an input utterance are extracted from statistics of phonetic and prosodic information. Phonetic information includes log energy, shimmer, formant frequencies, and Teager energy; Prosodic information includes Pitch, jitter, duration, and rate of speech. Finally a pattern classifier based on Gaussian support vector machines decides the emotion class of the utterance. We record speech commands and dialogs uttered at 2m away from microphones in 5 different directions. Experimental results show that the proposed method yields $48\%$ classification accuracy while human classifiers give $71\%$ accuracy.

  • PDF

음악에 따른 감정분류을 위한 EEG특징벡터 비교 (Comparison of EEG Feature Vector for Emotion Classification according to Music Listening)

  • 이소민;변성우;이석필
    • 전기학회논문지
    • /
    • 제63권5호
    • /
    • pp.696-702
    • /
    • 2014
  • Recently, researches on analyzing relationship between the state of emotion and musical stimuli using EEG are increasing. A selection of feature vectors is very important for the performance of EEG pattern classifiers. This paper proposes a comparison of EEG feature vectors for emotion classification according to music listening. For this, we extract some feature vectors like DAMV, IAV, LPC, LPCC from EEG signals in each class related to music listening and compare a separability of the extracted feature vectors using Bhattacharyya distance. So more effective feature vectors are recommended for emotion classification according to music listening.

섬유 패턴 디자인의 요소 분석체계 개발 가능성 (A Exploration of Pattern Design-Style Description System)

  • 조현승;지상현;이주현
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 1998년도 춘계학술발표 논문집
    • /
    • pp.237-242
    • /
    • 1998
  • 섬유 패턴 디자인의 감성 예측 모형을 개발하기 위한 전 단계로서 패턴 디자인 요소의 분석체계 개발 가능성을 이론적으로 검증하였다. 먼저 패턴 디자인의 최소 단위를 pattern primitive, 최소반복단위를 Repeated Pattern Unit로 개념화 한 후 'PP들의', 'RPU의',그리고 'RPU간의 특징'이라는 세개 영역에 걸쳐 24개의 지각적 특징들을 추출하였다. 24개의 지각적 특징들은 예비조사를 통해 섬유패턴 디자인을 충실히 기술할 수 있는 것으로 확인되었다. 추출된 지각적 특징들을 'PP의 모양에 의한 돌출성', 'PP의 색채에 의한 돌출성', 'PP들 모양의 다양성','PP들의 변화도', 'PP들 색채의 다양성', 'PRU의 돌출정도', 'PRU의 다양성'이라는 4개의 최상위 특징으로 수렴시키는 방식으로 위계화 하였다.

  • PDF

마감재를 통한 공간감성 표현에 관한 연구 - 감성어휘 평가와 요인분석을 통해 - (A Study on Expression of Space Emotion by Finishing Materials - According to Evaluation of Emotional Vocabulary and Factor Analysis -)

  • 서지은;박의정
    • 한국실내디자인학회논문집
    • /
    • 제21권1호
    • /
    • pp.177-185
    • /
    • 2012
  • The purpose of this study is to use as the basic data for design method in commercial space. So, we analyzed whether any emotion was induced by finishing materials in the commercial space. And we was to suggest expression methods of finish materials to induce in the emotional space. The results of this study are as follows : First, we could know that the emotional design is needed to enhance satisfaction of consumers. The role of finishing material is very important in emotional expression in the commercial space. Second, we extracted the adjectives vocabulary(14 pairs) to evaluate the space emotion. we could educe the four kinds of space emotion by Factor Analysis. In addition, we could arrange the emotional words to represent each space type(Decoration : 5 pairs, Expand : 4 pairs, Limitation : 3 pairs, Hierarchy : 2 pairs). Third, to use finishing materials and wall is very effective to induce the emotion in the emotional space. To use the color is good among the elements of finishing materials. Fourth, We could find that the center of the types of emotional space was induced with the boundary and the decoration. If we use contrasting colors and accent colors in the commercial space, we can induce the center and the boundary together. And if we use colorful or unusual patterns, we can induce the center and the decoration together. Fifth, To induce the expand, we should finish with one color in space. And To induce the center, we should finish with one type of the color or pattern and then we should partially use the contrast color and special pattern. the case of boundary, it is good method to part emphasize by color, texture and materials. And we can induce the decoration with materials and patterns.

  • PDF

MLP에 기반한 감정인식 모델 개발 (Development of Emotion Recognition Model based on Multi Layer Perceptron)

  • 이동훈;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제16권3호
    • /
    • pp.372-377
    • /
    • 2006
  • 본 논문에서, 우리는 뇌파를 이용하여 사용자의 감정을 인식하는 감정인식 모델을 제안한다. 사용자의 감정을 인식하기 위해서는 우선 생체 데이터나 감정 데이터를 포함한 뇌파의 정량적인 데이터를 획득하는 방법이 필요하며 다음으로 획득된 뇌파를 통하여 현재 사용자의 감정 상태를 규명하는 패턴인식 기법이 중요한 문제가 된다. 본 논문에서는 뇌파를 통하여 현재 사용자의 감정 상태를 규명하고 인식할 수 있는 패턴인식 기법으로 Multi Layer Perceptron(MLP)을 사용한 패턴인식 기법을 사용한다. 본 논문에서 제안한 감정인식 모델의 실험을 위하여 특정 공간 내에서 여러 피험자의 감정별 뇌파를 측정하고, 측정된 뇌파로 집중도 및 안정도를 도출하여 유의미한 데이터로 감정 DB를 구축한다. 감정별 DB를 본 논문에서 제안한 감정인식 모델로 학습한 후 새로운 사용자의 뇌파로 현재 사용자의 감정을 인식한다. 마지막으로 피험자의 수와 은닉 노드의 수에 따른 인식률의 변화를 측정함으로서 뇌파를 이용한 감정인식 모델의 성능을 평가한다.