최근에 사용자에 의한 대량의 텍스트 데이터가 발생하면서 사용자의 정보, 의견 등을 분석하는 오피니언 마이닝이 중요하게 부각되고 있다. 오피니언 마이닝 중 특히 정서 분석은 제품, 사회적 이슈, 정치인에 대한 호감 등에 대한 개인적 의견이나 정서를 분석하여 긍정, 부정이나 행복, 슬픔 등의 정서를 분석하는 연구 분야이다. 정서 분석을 위해서 정서 차원 이론의 정서가와 각성 차원의 2차원 공간을 사용하고, 이 공간에서 정서가 분포하는 영역을 설정하여 매핑하는 방법을 사용한다. 그러나 기존에는 정서의 분포 영역을 임의로 설정하는 문제가 있었다. 본 논문에서는 이 문제를 해결하기 위해, 한국어 정서 단어 목록을 사용해 사용자 설문을 실시하여 2차원 상에 12개 정서의 분포를 구성하였다. 또한 2차원 상의 특정 정서 상태가 여러 개의 정서에 중첩되는 경우, 정서에 소속될 확률을 사용한 룰렛휠 방법을 사용하여 하나의 정서를 선택하는 방법을 제안하였다. 제안한 방법을 사용하여 텍스트에서 정서 단어를 추출하여 텍스트를 정서로 분류할 수 있다.
Emotion Recognition is one of the important part to develop in human-human and human computer interaction. In this paper, we have focused on the performance of multi-class SVM (Support Vector Machine) with Gaussian RFB (Radial Basis function) kernel, which has been used to solve the problem of emotion recognition from physiological signals and to improve the accuracy of emotion recognition. The experimental paradigm for data acquisition, visual-stimuli of IAPS (International Affective Picture System) are used to induce emotional states, such as fear, disgust, joy, and neutral for each subject. The raw signals of acquisited data are splitted in the trial from each session to pre-process the data. The mean value and standard deviation are employed to extract the data for feature extraction and preparing in the next step of classification. The experimental results are proving that the proposed approach of multi-class SVM with Gaussian RBF kernel with OVO (One-Versus-One) method provided the successful performance, accuracies of classification, which has been performed over these four emotions.
Various researches on content sensibility with the development of digital contents are under way. Emotional research on fonts is also underway in various fields. There is a requirement to use the content expressions in the same way as the content, and to use the font emotion and the textual sensibility of the text in harmony. But it is impossible to select a proper font emotion in Korea because each of more than 6,000 fonts has a certain emotion. In this paper, we analysed emotional classification attributes and constructed the Hangul font recommendation system. Also we verified the credibility and validity of the attributes themselves in order to apply to Korea Hangul fonts. After then, we tested whether general users can find a proper font in a commercial font set through this emotional recommendation system. As a result, when users want to express their emotions in sentences more visually, they can get a recommendation of a Hangul font having a desired emotion by utilizing font-based emotion attribute values collected through the crowdsourced method.
The important issue of emotion recognition from speech is a feature extracting and pattern classification. Features should involve essential information for classifying the emotions. Feature selection is needed to decompose the components of speech and analyze the relation between features and emotions. Specially, a pitch of speech components includes much information for emotion. Accordingly, this paper searches the relation of emotion to features such as the sound loudness, pitch, etc. and classifies the emotions by using the statistic of the collecting data. This paper deals with the method of recognizing emotion from the sound. The most important emotional component of sound is a tone. Also, the inference ability of a brain takes part in the emotion recognition. This paper finds empirically the emotional components from the speech and experiment on the emotion recognition. This paper also proposes the recognition method using these emotional components and the transition probability.
In this paper, the comparison of speech feature parameters for emotion recognition is studied for emotion recognition using speech signal. For this purpose, a corpus of emotional speech data recorded and classified according to the emotion using the subjective evaluation were used to make statical feature vectors such as average, standard deviation and maximum value of pitch and energy. MFCC parameters and their derivatives with or without cepstral mean subfraction are also used to evaluate the performance of the conventional pattern matching algorithms. Pitch and energy Parameters were used as a Prosodic information and MFCC Parameters were used as phonetic information. In this paper, In the Experiments, the vector quantization based emotion recognition system is used for speaker and context independent emotion recognition. Experimental results showed that vector quantization based emotion recognizer using MFCC parameters showed better performance than that using the Pitch and energy parameters. The vector quantization based emotion recognizer achieved recognition rates of 73.3% for the speaker and context independent classification.
Understanding of human emotion has a high importance in interaction between human and machine communications systems. The most expressive and valuable way to extract and recognize the human's emotion is by facial expression analysis. This paper presents and implements an automatic extraction and recognition scheme of facial expression and emotion through still image. This method has three main steps to recognize the facial emotion: (1) Detection of facial areas with skin-color method and feature maps, (2) Creation of the Bezier curve on eyemap and mouthmap, and (3) Classification and distinguish the emotion of characteristic with Hausdorff distance. To estimate the performance of the implemented system, we evaluate a success-ratio with emotional face image database, which is commonly used in the field of facial analysis. The experimental result shows average 76.1% of success to classify and distinguish the facial expression and emotion.
인터넷과 스마트폰의 발달로 디지털 음원은 쉽게 접근이 가능해졌고 이에 따라 음악 검색 및 추천에 대한 관심이 높아지고 있다. 음악 추천 방법으로는 장르나 감정을 분류하기 위해 음정, 템포, 박자 등의 멜로디를 사용한 연구가 진행되고 있다. 하지만 음악에서 가사는 인간의 감정을 표현하는 수단 중의 하나로 역할 비중이 점점 높아지고 있기 때문에 가사를 기반으로 한 감정 분류 연구가 필요하다. 이에 본 논문에서는 가사를 기반으로 이별 감정을 세분화하기 위해 이별 가사의 감정을 분석한다. 이별 가사에 나타나는 단어 간 유사도를 Word2Vec 학습을 통해 벡터화하여 감정 사전을 구축 한 후 LSTM을 활용하여 가사를 학습시켜 유사한 감정으로 가사를 분류해주는 Word2Vec과 LSTM을 활용한 이별 가사 감정 분류 방법을 제안한다.
International Journal of Fuzzy Logic and Intelligent Systems
/
제11권2호
/
pp.124-128
/
2011
Music emotion recognition is currently one of the most attractive research areas in music information retrieval. In order to use emotion as clues when searching for a particular music, several music based emotion recognizing systems are fundamentally utilized. In order to maximize user satisfaction, the recognition accuracy is very important. In this paper, we develop a new music emotion recognition system, which employs a multilabel feature selector and multilabel classifier. The performance of the proposed system is demonstrated using novel musical emotion data.
Emotion recognition is one of the most important and challenging areas of computer vision. Nowadays, many studies on emotion recognition were conducted and the performance of models is also improving. but, more research is needed on emotion recognition and sentiment analysis of video viewers. In this paper, we propose an emotion analysis system the includes a sentiment analysis model and an interest prediction model. We analyzed the emotional patterns of people watching popular and unpopular videos and predicted the level of interest using the emotion analysis system. Experimental results showed that certain emotions were strongly related to the popularity of videos and the interest prediction model had high accuracy in predicting the level of interest.
This paper presents an efficient algorithm to retrieve similar music files from a large archive of digital music database. Users are able to navigate and discover new music files which sound similar to a given query music file by searching for the archive. Since most of the methods for finding similar music files from a large database requires on computing the distance between a given query music file and every music file in the database, they are very time-consuming procedures. By measuring the acoustic distance between the pre-classified music files with the same type of emotion, the proposed method significantly speeds up the search process and increases the precision in comparison with the brute-force method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.