• Title/Summary/Keyword: Emissions by Year

Search Result 249, Processing Time 0.031 seconds

A Study of Emission Volume of Air Pollutants in Suwon City (수원시 대기오염발생량 조사에 관한 연구 -자동차에 의한 발생 중심으로-)

  • Cho, Ki-Chul;Whang, Kyung-Chul
    • Journal of Environmental Science International
    • /
    • v.19 no.3
    • /
    • pp.313-321
    • /
    • 2010
  • This study was carried out to investigate the emissions of the air pollutants from the automobile in Suwon city. To estimate emissions due to by automobile the data of express highway and the national road used an observation traffic volume, and the other roads used a method by Vehicle kilometer traveled(VKT). In the emissions due to by automobile from Suwon city, CO was highest 36,290.4 ton/year, NOx at 19,392.1 tons, HC 5,095.4 tons and PM 2,788.7 tons was highly order. SOx emissions in the whole Suwon city by fuel types was investigated with 178ton/year from the Diesel motorcar, 26.9 ton/year and 6.2 ton/year from the gasolines and LPG automobiles, respectively. VOC emissions from the automobile was investigated with 366.4 ton/year (29.22%) from Gwonseon-gu, 329.2 ton/year (26.25%) Yeongtong-gu, 319.9 ton/year (25.51%) Jangan-gu, 238.6 ton/year (19.03%) Paldal-gu.

Global Carbon Cycle Under the IPCC Emissions Scenarios (IPCC 배출시나리오에 따른 지구 규모의 탄소 이동 연구)

  • Kwon, O-Yul
    • Journal of Environmental Science International
    • /
    • v.16 no.3
    • /
    • pp.287-297
    • /
    • 2007
  • Increasing carbon dioxide emissions from fossil fuel use and land-use change has been perturbing the balanced global carbon cycle and changing the carbon distribution among the atmosphere, the terrestrial biosphere, the soil, and the ocean. SGCM(Simple Global Carbon Model) was used to simulate global carbon cycle for the IPCC emissions scenarios, which was six future carbon dioxide emissions from fossil fuel use and land-use change set by IPCC(Intergovernmental Panel on Climate Change). Atmospheric $CO_2$ concentrations for four scenarios were simulated to continuously increase to $600{\sim}1050ppm$ by the year 2100, while those for the other two scenarios to stabilize at $400{\sim}600ppm$. The characteristics of these two $CO_2$-stabilized scenarios are to suppress emissions below $12{\sim}13$ Gt C/yr by tile year 2050 and then to decrease emissions up to 5 Gt C/yr by the year 2100, which is lower than the current emissions of $6.3{\pm}0.4$ Gt C/yr. The amount of carbon in the atmosphere was simulated to continuously increase for four scenarios, while to increase by the year $2050{\sim}2070$ and then decrease by the year 2100 for the other two scenarios which were $CO_2$-stabilized scenarios. Even though the six emission scenarios showed different simulation results, overall patterns were such similar that the amount of carbon was in the terrestrial biosphere to decrease first several decades and then increase, while in the soil and the ocean to continuously increase. The ratio of carbon partitioning to tile atmosphere for the accumulated total emissions was higher for tile emission scenario having higher atmospheric $CO_2$, however that was decreasing as time elapsed. The terrestrial biosphere and the soil showed reverse pattern to the atmosphere.

Estimation of Air Pollutant Emissions from Port-Related Sources in the Port of Incheon (인천항 항만시설에서의 대기오염물질 배출량 산정)

  • Han, Se-Hyun;Youn, Jong-Sang;Kim, Woo-Jung;Seo, Yoon-Ho;Jung, Yong-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.4
    • /
    • pp.460-471
    • /
    • 2011
  • A port has been regarded as a significant contributor to air pollution in the surrounding areas. Port-related air pollutants are released from not only marine vessels, but also various land-side sources at ports, which include cargo handling equipment, vehicles, locomotives, and fugitive dust sources by port activities such as bulk handling and vehicle movements. However, most studies in Korea have only focused on vessel emissions and there is a lack of information on the emissions from other sources at port. In this study, in order to establish the port-related emission inventory and evaluate the relative contribution of these sources to air emissions from the Port of Incheon, the emissions from land-side sources were estimated and the CAPSS (Clean Air Policy Support System) data for vessel emissions were used. In particular, the detailed information and activity data for the cargo handling equipment source were collected and the emission factors and emissions by equipment types were calculated using U.S. EPA methodologies. Total HC, CO, $NO_x$, $PM_{10}$, and $SO_2$ emissions from port-related sources including the vessel in 2007 were calculated as 229 ton/year, 638 ton/year, 4,861 ton/year, 307 ton/year, and 3,995 ton/year, respectively. It was found that the vessel was the largest contributor to air pollutant emissions from the port, the cargo handling equipment was responsible for about from 8% to 13% of HC, CO, and $NO_x$ emissions and the resuspended road dust contributed about 39% for $PM_{10}$ emissions. The results of this study will be used to establish the management and reduction strategies of air pollution in the port.

Legal Review on the Regulatory Measures of the European Union on Aircraft Emission (구주연합의 항공기 배출 규제 조치의 국제법적 고찰)

  • Park, Won-Hwa
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.25 no.1
    • /
    • pp.3-26
    • /
    • 2010
  • The European Union(EU) has recently introduced its Directive 2008/101/EC to include aviation in the EU ETS(emissions trading system). As an amendment to Directive 2003/87/EC that regulates reduction of the green house gas(GHG) emissions in Europe in preparation for the Kyoto Protocol, 1997, it obliges both EU and non-EU airline operators to reduce the emission of the carbon dioxide(CO2) significantly in the year 2012 and thereafter from the level they made in 2004 to 2006. Emission allowances allowed free of charge for each airline operator is 97% in the first year 2012 and 95% from 2013 and thereafter from the average annual emissions during historical years 2004 to 2006. Taking into account the rapid growth of air traffic, i.e. 5% in recent years, airlines operating to EU have to reduce their emissions by about 30% in order to meet the requirements of the EU Directive, if not buy the emissions right in the emissions trading market. However, buying quantity is limited to 15% in the year 2012 subject to possible increase from the year 2013. Apart from the hard burden of the airline operators, in particular of those from non-European countries, which is not concern of this paper, the EU Directive has certain legal problems. First, while the Kyoto Protocol of universal application is binding on the Annex I countries of the Climate Change Convention, i.e. developed countries including all Member States of the European Union to reduce GHG at least by 5% in the implementation period from 2008 to 2012 over the 1990 level, non-Annex I countries which are not bound by the Kyoto Protocol see their airlines subjected to aircraft emissions reductions scheme of EU when operating to EU. This is against the provisions of the Kyoto Protocol dealing with the emissions of GHG including CO2, target of the EU Directive. While the Kyoto Protocol mandates ICAO to set up a worldwide scheme for aircraft emissions to contribute to stabilizing GHG concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system, the EU ETS was drawn up outside the framework of the international Civil Aviation Organization(ICAO). Second, EU Directive 2008/101 defines 'aviation activities' as covering 'flights which depart from or arrive in the territory of a Member State to which the [EU] Treaty applies'. While the EU airlines are certainly subject to the EU regulations, obliging non-EU airlines to reduce their emissions even if the emissions are produced during the flight over the high seas and the airspace of the third countries is problematic. The point is whether the EU Directive can be legally applied to extra-territorial behavior of non-EU entities. Third, the EU Directive prescribes 2012 as the first year for implementation. However, the year 2012 is the last year of implementation of the Kyoto Protocol for Annex I countries including members of EU to reduce GHG including the emissions of CO2 coming out from domestic airlines operation. Consequently, EU airlines were already on the reduction scheme of CO2 emissions as long as their domestic operations are concerned from 2008 until the year 2012. But with the implementation of Directive 2008/101 from 2012 for all the airlines, regardless of the status of the country Annex I or not where they are registered, the EU airlines are no longer at the disadvantage compared with the airlines of non-Annex I countries. This unexpected premium for the EU airlines may result in a derogation of the Kyoto Protocol at least for the year 2012. Lastly, as a conclusion, the author shed light briefly on how the Korean aviation authorities are dealing with the EU restrictive measures.

  • PDF

The Environmental and Economic Impact of Trade between South Korea and the United States

  • Tae-Jin Kim;Nikolas Tromp
    • East Asian Economic Review
    • /
    • v.28 no.1
    • /
    • pp.37-67
    • /
    • 2024
  • This paper analyses carbon emissions and value-added embodied in trade between two large developed countries, South Korea and the United States, during 2000-2014. Using multi-regional input-output (MRIO) tables, our analysis reveals that carbon emissions and value-added embodied in exports grew by 19% and 101% for South Korea but shrank by 43% and 7% for the United States. As a result, South Korea experienced a 40% increase in net carbon exports and 243% increase in net value-added exports. At the industry level, the primary drivers of changes in carbon exports were electricity and basic materials. The majority of industries in witnessed improvements in carbon intensities suggesting improved environmental efficiency. While both countries achieved a decoupling of carbon emissions from value-added exports, substantial year-to-year and sectoral variations were observed. Finally, structural decomposition analysis indicates that domestic supply-side factors played a role in decreasing emissions whereas foreign demand-side factors contributed to emissions increases. In line with the main findings, various implications for policy and future research are discussed.

Analysis of Air Pollutant Emissions from Agricultural Machinery in South Korea (국내의 농업기계에 의해 배출되는 대기 오염 물질 분석)

  • Shin, Chang-Seop;Park, Tusan;Hong, Dong-Hyuk;Kim, TaeHan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.3
    • /
    • pp.14-25
    • /
    • 2019
  • From 2019 onwards, more stringent regulations (from Stage 4 to Stage 5) are to be implemented in Europe in order to reduce the air pollutant emissions. In South Korea, the government authorities started to make new regulation to meet the European regulation. As a first step, the air pollutant emissions such as CO, NOx, SOx, TSP, $PM_{10}$, $PM_{2.5}$, VOC, $NH_3$ by agricultural machinery were analyzed based on CAPSS inventory along with the analysis in the general aspect in this study. Three levels of analysis was conducted each in agricultural machinery aspect along with in the general aspect. Per agricultural tractor, all kinds of the air pollutant emissions decreased by 25, 25, 99, 25, 25, 25, 25% for the CO, NOx, SOx, TSP, $PM_{10}$, VOC, $NH_3$ emissions each from the year 2000 to the year 2014. Per combine harvester, all kinds of the air pollutant emissions decreased by 63, 63, 91, 63, 63, 63, 63% for the CO, NOx, SOx, TSP, $PM_{10}$, VOC, $NH_3$ emissions each from the year 2000 to the year 2014.

Application of Drone Images to Investigate Biomass Management Practices and Estimation of CH4 Emissions from Paddy Fields (드론영상을 활용한 논 유기물 관리 인자 조사 및 메탄가스 배출량 산정)

  • Park, Jinseok;Jang, Seongju;Kim, Hyungjoon;Hong, Rokgi;Song, Inhong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.3
    • /
    • pp.39-49
    • /
    • 2020
  • Rice paddy cultivation is one of the major sources in methane (CH4) emission of which accurate assessment would be a prerequisite for agricultural greenhouse gas management. Biomass treatment in paddy fields is an important factor that affects CH4 emissions and thus needs to be taken into account. The objectives of this study were to apply drone images to investigate organic matter practices and to incorporate into the estimation of CH4 emissions from paddy fields. Three study areas were selected by one from each of the three different regions of Yeongnam, Honam and Jungbu, which are the most active region in paddy cultivation. The eBee drone was used to take images of the study sites twice a year; Jul mid-season for identifying rice cultivation area; Jan for investigating rice straw management and winter crop cultivation. Based on biomass management practices, different emissions factors were assigned on an individual paddy field and CH4 emmisions were estimated by multiplying respective areas. The ratios of rice straw application and winter crop cultivation were 1.4% and 37.2% in Hapcheon, 1.3% and 19.8% in Gimje, and 0.0% and 0.5% in Dangjin, respectively. The CH4 emissions estimates for respective sites were 0.40 ton CH4/year/ha, 0.34 ton CH4/year/ha, and 0.29 ton CH4/year/ha. On average, estimated CH4 emissions of this study were 28.5% less than the current Tier 2 CH4 emission estimation method.

Analysis of Regional and Inter-annual Changes of Air Pollutants Emissions in China (중국 대기오염물질 배출의 시공간적 변화 분석)

  • Woo, Jung-Hun;Bu, Chanjong;Kim, Jinsu;Ghim, Young Sung;Kim, Younha
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.1
    • /
    • pp.87-100
    • /
    • 2018
  • Fast economic growth and urbanization of China have been causing air pollution not only over its domestic but transboundary atmosphere. Recent high fine particle pollution episodes in China made the government move toward more stringent air pollution control policies - which are mostly fuel switching and emissions control. In this research, we tried to understand characteristics of Chinese emissions and their change by analyzing its emissions inventory by year, sector, and region. From the inter-comparison of existing bottom-up emission inventories, we found relatively good agreements (<20% difference) for $SO_2$ and $NO_x$, but 30% or more discrepancies for some pollutants. Inter-comparison with top-down $NO_x$ emissions estimates also showed 20~50% differences by year. The regional distribution and inter-annual changes of emissions revealed different stages of energy/fuel mix and policy penetration. Early increase of pollutants emissions in the eastern part of China might give strong influences to the Korean peninsular in early 2000s but, more stringent control in that region would help improving air pollution in Korea in near future.

Estimation of greenhouse gas emissions: An alternative approach to waste management for reducing the environmental impacts in Myanmar

  • Tun, Maw Maw;Juchelkova, Dagmar
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.618-629
    • /
    • 2019
  • Along with growing population and economic development, increasing waste generation rates in developing countries have become a major issue related to the negative impacts of waste management on the environment. Currently, the business-as-usual waste management practices in Myanmar are largely affecting the environment and public health. Therefore, this study developed an alternative approach to waste management for reducing the environmental impacts in Myanmar by highlighting the greenhouse gas (GHG) emissions from business-as-usual practices and three proposed scenarios during 2018-2025. The calculation methods of the Intergovernmental Panel on Climate Change and Institute for Global Environmental Strategies were used for estimating the GHG emissions from waste management. It was estimated that the current waste management sector generated approximately 2,000 gigagrams of CO2-eq per year in 2018, trending around 3,350 Gg of CO2-eq per year in 2025. It was also observed that out of the proposed scenarios, Scenario-2 significantly minimized the environmental impacts, with the lowest GHG emissions and highest waste resource recovery. Moreover, the GHG emissions from business-as-usual practices could be reduced by 50% by this scenario during 2018-2025. The target of the similar scenario could be achieved if the local government could efficiently implement waste management in the future.

A Study on Characteristics of Methane Emissions from Gasoline Passenger Cars (휘발유 자동차의 메탄(CH4) 배출특성에 관한 연구)

  • Jeon M.S.;Ryu J.H.;Lyu Y.S.;Kim J.C.;Lim C.S.;Kim D.W.;Jeong S.W.;Cho S.Y.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.6
    • /
    • pp.649-655
    • /
    • 2005
  • Automotive exhaust is suspected to be one of the main reasons of the rapid increase in greenhouse effect gases in ambient air. Although methane emissions are generally orders of magnitude lower than emissions of $CO_{2}$, the global warming potential (GWP) of methane is greater than that of $CO_{2}$. The environmental impact of methane emissions from vehicles is negligible and is likely to remain so for the foreseeable future. In this study, in order to investigate greenhouse gas emission characteristics from gasoline passenger cars, 20 vehicles were tested on the chassis dynamometer and methane emissions were measured. The emission characteristics by model year, mileage, vehicle speed were discussed. Test mode is CVS-15 mode that have been used to regulate for light-duty vehicle in Korea. It was found that $CH_{4}$ emissions showed higher for cold start, old model year and long mileage than hot start, new model year and short mileage, respectively. These results were compared with IPCC emission factors and the overall our results were anticipated to contribute for domestic greenhouse gas emissions calculation.