• 제목/요약/키워드: Emissions Reduction

검색결과 1,155건 처리시간 0.026초

The effect of nuclear energy on the environment in the context of globalization: Consumption vs production-based CO2 emissions

  • Danish, Danish;Ulucak, Recep;Erdogan, Seyfettin
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1312-1320
    • /
    • 2022
  • The earlier studies have analyzed theoretical links between nuclear energy and carbon dioxide (CO2) emissions concerning territorial (or production-based) emissions. Here using the latest available dataset, this study explores the impacts of nuclear energy on production-based and consumption-based CO2 emission in the era of globalization for the Organization for Economic Co-operation and Development (OECD) countries. The Driscoll-Kraay regression method reveals that nuclear energy is beneficial for the reduction of production-based CO2 emissions. However, it is revealed that nuclear energy does not reduce consumption-based CO2 emissions that are traded internationally and hence not comprised in conventional production-based emissions (territory) inventories. Globalization tends to reduce both production-based and demand-based carbon emissions. Finally, Environmental Kuznets Curve (EKC) is validated for both kinds of CO2 emissions. The findings may deliver practical policy implications related to nuclear energy and CO2 emissions for selected countries.

발전 에너지 업종의 온실가스 감축 신기술 조사 및 감축효과 분석 (A Study on the GHG Reduction Newest Technology and Reduction Effect in Power Generation·Energy Sector)

  • 김주청;심소정
    • 한국기후변화학회지
    • /
    • 제4권4호
    • /
    • pp.349-358
    • /
    • 2013
  • 본 연구에서는 온실가스배출 집약도가 크고 온실가스 에너지 목표관리에 의한 감축의무 부담이 큰 발전 및 에너지 업종의 향후 적용 가능한 온실가스감축 신기술을 조사하고, 각 기술별 기술특성을 알아보았다. 발전 및 에너지 분야의 온실가스 감축 신기술로는 크게 효율 향상, CCS, 가스복합발전 기술로 분류할 수 있다. 감축 신기술에 대해 예상배출량 및 온실가스 배출 원단위를 산정식을 이용하여 산정한 후, 기존기술을 온실가스 감축 신기술로 대체하였을 경우에 대한 온실가스 감축량을 예상해 보았다. 그 결과, CCS 발전 기술로 인한 온실 가스 감축률이 30% 이상으로 가장 클 것으로 예상되며, 석탄가스화 연료전지 기술 및 가압유동층 화력발전 기술의 감축률 또한 20% 이상으로 감축 효과가 큰 것으로 나타났다. 신기술의 특성과 효율적 도입에 대한 연구가 지속되고, 향후 온실가스 감축목표 달성을 위해 적절히 적용한다면 국가온실가스감축 목표를 비용 효과적으로 달성할 수 있을 것으로 판단된다.

ECU 커먼레일 디젤기관에 있어서 매연 및 NOX 배출물 동시 저감용 일체형 요소-SCR 촉매필터 시스템의 특성에 관한 연구 (A Study on Characteristics of an Integrated Urea-SCR Catalytic Filter System for Simultaneous Reduction of Soot and NOX Emissions in ECU Common-rail Diesel Engines)

  • 배명환
    • 한국자동차공학회논문집
    • /
    • 제22권4호
    • /
    • pp.111-120
    • /
    • 2014
  • The aim of this study is to develop an integrated urea-SCR catalytic filter system for reducing soot and $NO_X$ emissions simultaneously in diesel engines. In this study, the characteristics of exhaust emissions relative to reactive activation temperature under four kinds of engine loads are experimentally investigated by using a four-cycle, four-cylinder, direct injection type, water-cooled turbo intercooler ECU common-rail diesel engine with the integrated urea-SCR $MnO_2-V_2O_5-WO_3/TiO_2/SiC$ catalytic filter system operating at three kinds of engine speeds. The urea-SCR reactor is used to reduce $NO_X$ emissions, and the catalytic filter system is used to reduce soot emissions. The reactive activation temperature is very important for reacting a reducing agent with exhaust emissions. The reactive activation temperatures in this experiment is applied to 523, 573 and 623 K. The fuel is sprayed by the pilot and main injections at the variable injection timing between BTDC $15^{\circ}$ and ATDC $1^{\circ}$ according to experimental conditions. It is found that the $NO_X$ conversion rate is the highest as 83.9% at the reactive activation temperature of 523 K in all experimental conditions of engine speed and load, and the soot emissions shown by the average reduction rate of approximately 93.3% are almost decreased below 0.6% in all experimental conditions regardless of reactive activation temperatures. Also, the THC and CO emissions by oxidation reaction of Mn, V and Ti are shown in the average reduction rates of 70.3% and 38% regardless of all experimental conditions.

도시식생의 주택에너지절약 및 탄소배출저감 기능 -춘천시를 대상으로- (Function of Home Energy Savings and Carbon Emission Reduction by Urban Vegetation- Case of Chuncheon-)

  • 조현길;서옥하;한갑수
    • 한국조경학회지
    • /
    • 제26권3호
    • /
    • pp.104-117
    • /
    • 1998
  • Rising concern about climate change has evoked interest in the potential for urban vegetation to help reduce the level of atmospheric CO\sub 2\, a major heat-trapping gas. This study quantified the functio of home energy savings and carbon emission reduction by shading, evapotranspiration and windspeed reduction of urban vegetatioin in Chuncheon. Tree and shrub cover averaged approximately 13% in residential land. The effects of shading, evapotranspiration and windspeed reduction annually saved heating energy by 2.2% and cooling energy by 8.8%. The heating and cooling energy savings reduced carbon emissions by 3.0% annually. These avoided emissions equaled the amount of carbon emitted annually from fossil fuel consumption by a population of about 1,230. Carbon emission reduction per residential building was 55kg for detached buildings and 872 kg for multifamily buildings. Urban vegetation annually decreased heating and cooling energy cost by ₩1.1 billions, which were equivalent to annual savings of ₩10,000 savings and carbon emission reduction due to tree plantings in the wrong locations, while windspeed reduction had a great effect. Plantings fo large trees close to the west and east wall of buildings, full tree plantings on the north, and avoidance of shade-tree plantings or selection of solar-friendlytrees on the south were recommended to improve the function of building energy savings and carbon emission reduction by urban vegetation.

  • PDF

디젤엔진에서 DMC를 사용한 경우의 배기가스의 농도분석에 관한 실험적 연구 (An Experimental Study on the Analysis of Exhaust Gas Concentration by Using DMC in Diesel Engine)

  • 최승훈;오영택
    • 한국자동차공학회논문집
    • /
    • 제8권2호
    • /
    • pp.1-8
    • /
    • 2000
  • Recently, Our planet is faced with very serious problems related to the air pollution due to the exhaust emissions of the diesel engine. So, lots of researchers have studied to reduce the exhaust emissions of diesel engine that influenced the environment strong. But most researchers have mainly studied and suggested the solution of reduction on the total exhaust emissions of diesel engine. In this study, the quantities of the low and high hydrocarbon among the exhaust emissions in diesel engine have been investigated by the quantitative analysis of the hydrocarbon C1~C6 using the gas chromatography. This study carried out by comparing the chromatograms with diesel fuel and mixed fuel which are blended the diesel and DMC(dimethyl carbonate)that includes the oxygen of about 53%. The results of this study show that the hydrocarbon C1~C6 among the exhaust emissions of the mixed fuel are exhausted lower than those of the diesel fuel at the all load.

  • PDF

GREENHOUSE GAS EMISSIONS FROM ONSITE EQUIPMENT USAGE IN ROAD CONSTRUCTION

  • Byungil Kim;Hyounkyu Lee;Hyoungbae Park;Hyoungkwan Kim
    • 국제학술발표논문집
    • /
    • The 4th International Conference on Construction Engineering and Project Management Organized by the University of New South Wales
    • /
    • pp.286-291
    • /
    • 2011
  • Onsite usage of construction equipment accounts for a 6.8% of air pollution in Korea. The high concentration of carbon dioxide in such emissions impact not only climate change, but also people's health. However, greenhouse gas emissions from onsite equipment usage have not yet been fully investigated. This study presents a comparative analysis on how much greenhouse gas is generated by various equipment types used in different construction activities. Two ongoing cases which involve a typical road construction project in Korea were selected for the comparison purpose. Greenhouse gas emissions from each onsite equipment usage of the different activities were estimated on the ground of design documents. The estimates were compared and analyzed to derive the main sources of greenhouse gas emissions. The result showed that earthwork constituted the largest part-more than 90%-among work types. Dump truck, bulldozer, and loader were major sources for such emissions. The study results are expected to be used as a basis for reduction of greenhouse gas emission from onsite equipment usage.

  • PDF

Does nuclear energy reduce consumption-based carbon emissions: The role of environmental taxes and trade globalization in highest carbon emitting countries

  • Muhammad Yasir Mehboob;Benjiang Ma;Muhammad Sadiq;Yunsheng Zhang
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.180-188
    • /
    • 2024
  • This research examined consumption-based carbon emission reduction by nuclear energy consumption and environmental tax while considering the context of trade globalization in the highest five emitter nations from 1990 to 2020. This study used various empirical methodologies, including preliminary analysis to check the stationarity and cointegration, the CS-ARDL for long-run analysis, CCEMG, AMG for robustness, and the D-H causality test for short-term pairwise causation. The results indicated that nuclear energy consumption, environmental tax, and trade globalization help to mitigate consumption-based carbon emissions while economic growth and population density boost carbon emissions. Furthermore, the results also found two-way casual connection exists between nuclear energy consumption, population density, and consumption-based carbon emissions. Thus, the results emphasize the need for government policies that encourage nuclear energy and environmental tax as a strategy to reduce carbon emissions and achieve and maintain environmental development.

미연 배기가스 점화 기술과 탄화수소 흡착기를 이용한 배기저감 (Exhaust Emissions Reduction using Unburned Exhaust Gas Ignition Technology and Hydrocarbon Adsorber)

  • 김충식;천준영;최진욱;김득상;김인탁;이윤석;엄인용;조용석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.150-155
    • /
    • 2000
  • Exhaust emissions from vehicles are the main source of air pollution. Many researchers are trying to find the way of reducing vehicle emissions, especially in the cold transient period of the FTP-75 test. In this study, UEGI (Unburned Exhaust Gas Ignition) technology, warming up the close-coupled catalytic converter (CCC) by igniting the unburned exhaust mixture using two glow plugs installed in the upstream of the catalyst, was developed. It was applied to an exhaust system with a hydrocarbon adsorber to ensure an effective reduction of HC emission during the cold start period. Results showed that the CCC reaches the light-off temperature (LOT) in a shorter time compared with the baseline exhaust system, and HC and CO emissions are reduced significantly during the cold start.

  • PDF

Estimated CO2 Emissions and Analysis of Solid Recovered Fuel (SRF) as an Alternative Fuel

  • Kim, Sang-Kyun;Jang, Kee-Won;Hong, Ji-Hyung;Jung, Yong-Won;Kim, Hyung-Chun
    • Asian Journal of Atmospheric Environment
    • /
    • 제7권1호
    • /
    • pp.48-55
    • /
    • 2013
  • The purpose of this study was to develop a $CO_2$ emission factor for refuse plastic fuel (RPF) combustion facilities, and calculate the $CO_2$ emissions from these facilities. The $CO_2$ reduction from using these facilities was analyzed by comparing $CO_2$ emission to facilities using fossil fuels. The average $CO_2$ emission factor from RPF combustion facilities was 59.7 Mg $CO_2$/TJ. In addition, fossil fuel and RPF use were compared using net calorific value (NCV). Domestic RPF consumption in 2011 was 240,000 Mg/yr, which was compared to fossil fuels using NCV. B-C oil use, which has the same NCV, was equal to RPF use. In contrast, bituminous and anthracite were estimated at 369,231 Mg/yr and 355,556 Mg/yr, respectively. In addition, the reduction in $CO_2$ emissions due to the alternative fuel was analyzed. $CO_2$ emissions were reduced by more than 350 Mg $CO_2$/yr compared to bituminous and anthracite. We confirmed that using RPF, an alternative fuel, can reduce $CO_2$ emissions.

배출권거래제 하에서 2단계 공급사슬에서 다품목의 통합재고모형 (An Integrated Multi-Product Inventory Model for a Two-Echelon Supply Chain under Cap-and-Trade Mechanism)

  • 김대홍
    • 산업경영시스템학회지
    • /
    • 제42권4호
    • /
    • pp.61-68
    • /
    • 2019
  • Currently many companies are interested in reduction of the carbon emissions associated with their supply chain activities such as transportation and operations. Operational decisions, such as modifications in order quantities could an effective way in reducing carbon emissions in the supply chain. Cap-and-trade regulation, sometimes called emissions trading, is a market-based tool to limit greenhouse gas emissions. Under cap-and-trade regulation, emission credits are allocated to the firms and the firms trades emissions under cap-and-trade schemes. In this paper, we propose a single-manufacturer single-buyer two-echelon supply chain problem under the cap-and-trade mechanism incorporating the carbon emissions caused by transportation and warehousing activities where a single manufacturer produces a family of items in order to deliver a family of items to a single buyer at a fixed interval of time for effective implementation of Just-In-Time (JIT) Purchasing. An integrated multi-product lot-splitting model of facilitating multiple shipments in small lots between buyer and manufacturer is developed in a JIT Purchasing environment. Also, an iterative heuristic algorithm is developed to derive the common order interval, the number of intervals for each product and the number of shipments between the buyer and the manufacturer during the common interval. A numerical example is given to illustrate the savings in reduction of total cost and carbon emissions by the inventory model incorporating cap-and-trade mechanism compared to the classical inventory model. The proposed inventory model could be useful for the practical solution of two-echelon supply chain inventory problem under cap-and-trade mechanism.