• 제목/요약/키워드: Emission spectroscopy

검색결과 1,164건 처리시간 0.03초

Chamber Monitoring with Residual Gas Analysis with Self-Plasma Optical Emission Spectroscopy

  • 장해규;이학승;박정건;채희엽
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.262.2-262.2
    • /
    • 2014
  • Plasma processing is an essential process for pattern etching and thin film deposition in nanoscale semiconductor device fabrication. It is necessary to maintain plasma chamber in steady-state in production. In this study, we determined plasma chamber state with residual gas analysis with self-plasma optical emission spectroscopy. Residual gas monitoring of fluorocarbon plasma etching chamber was performed with self-plasma optical emission spectroscopy (SPOES) and various chemical elements was identified with a SPOES system which is composed of small inductive coupled plasma chamber for glow discharge and optical emission spectroscopy monitoring system for measuring optical emission. This work demonstrates that chamber state can be monitored with SPOES and this technique can potentially help maintenance in production lines.

  • PDF

In-situ Endpoint Detection for Dielectric Films Plasma Etching Using Plasma Impedance Monitoring and Self-plasma Optical Emission Spectroscopy with Modified Principal Component Analysis

  • 장해규;채희엽
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.153-153
    • /
    • 2012
  • Endpoint detection with plasma impedance monitoring and self-plasma optical emission spectroscopy is demonstrated for dielectric layers etching processes. For in-situ detecting endpoint, optical-emission spectroscopy (OES) is used for in-situ endpoint detection for plasma etching. However, the sensitivity of OES is decreased if polymer is deposited on viewport or the proportion of exposed area on the wafer is too small. To overcome these problems, the endpoint was determined by impedance signal variation from I-V monitoring (VI probe) and self-plasma optical emission spectroscopy. In addition, modified principal component analysis was applied to enhance sensitivity for small area etching. As a result, the sensitivity of this method is increased about twice better than that of OES. From plasma impedance monitoring and self-plasma optical emission spectroscopy, properties of plasma and chamber are analyzed, and real-time endpoint detection is achieved.

  • PDF

자동차 배출가스 측정을 위한 Photoacoustic Spectroscopy Cell의 3차원 유동장 해석 (Three-Dimensional Fluid Flow Analysis of Photoacoustic Spectroscopy Cell for Measurement of Automotive Exhaust Gas)

  • 김현철;박종호
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.111-118
    • /
    • 2003
  • Recently, environmental damage to urban area becomes serious problem due to the exhaust emissions by increasing the number of vehicle. Especially, exhaust emission from diesel vehicles are blown to be harmful to human health and environment. Photoacoustic Spectroscopy system is very useful technology for simultaneous and continuous measurement of the various components of the automotive exhaust gas. In this study, in order to reduce emission gases from automobile, we tried to develop the measurement system of Photoacoustic Spectroscopy. To improve performance of high sensitive Photoacoustic Spectroscopy system for automotive exhaust emissions, the shape of Photoacoustic Spectroscopy cell was optimized to use the flow analysis. And Exhaust emission data of the 1,500cc gasoline engine was fixed the working fluid. The characteristics of fluid flow for cell were analyzed by various conditions in detail.

잔류가스분석기 및 발광 분광 분석법을 통한 중간압력의 NF3 플라즈마 실리콘 식각 공정 (Silicon Etching Process of NF3 Plasma with Residual Gas Analyzer and Optical Emission Spectroscopy in Intermediate Pressure)

  • 권희태;김우재;신기원;이환희;이태현;권기청
    • 반도체디스플레이기술학회지
    • /
    • 제17권4호
    • /
    • pp.97-100
    • /
    • 2018
  • $NF_3$ Plasma etching of silicon was conducted by injecting only $NF_3$ gas into reactive ion etching. $NF_3$ Plasma etching was done in intermediate pressure. Silicon etching by $NF_3$ plasma in reactive ion etching was diagnosed through residual gas analyzer and optical emission spectroscopy. In plasma etching, optical emission spectroscopy is generally used to know what kinds of species in plasma. Also, residual gas analyzer is mainly to know the byproducts of etching process. Through experiments, the results of optical emission spectroscopy during silicon etching by $NF_3$ plasma was analyzed with connecting the results of etch rate of silicon and residual gas analyzer. It was confirmed that $NF_3$ plasma etching of silicon in reactive ion etching accords with the characteristic of reactive ion etching.

실시간 플라즈마공정 모니터링을 위한 Self Plasma-Optical Emission Spectroscopy 성능 향상 (Improved Self Plasma-Optical Emission Spectroscopy for In-situ Plasma Process Monitoring)

  • 조경재;홍상진
    • 반도체디스플레이기술학회지
    • /
    • 제16권2호
    • /
    • pp.75-78
    • /
    • 2017
  • We reports improved monitoring performance of Self plasma-optical emission spectroscopy (SP-OES) by augmenting a by-pass tube to a conventional straight (or single) tube type self plasma reactor. SP-OES has been used as a tool for the monitoring of plasma chemistry indirectly in plasma process system. The benefits of SP-OES are low cost and easy installation, but some semiconductor industries who adopted commercialized SP-OES product experiencing less sensitivity and slow sensor response. OH out-gas chemistry monitoring was performed to have a direct comparison of a conventional single type tube and a by-pass type tube, and fluid dynamic simulation on the improved hardware design was also followed. It is observed faster pumping out of OH from the chamber in the by-pass type SP-OES.

  • PDF

Excitation and Emission Properties of Adsorbed U(VI) on Amorphous Silica Surface

  • Jung, Euo Chang;Kim, Tae-Hyeong;Kim, Hee-Kyung;Cho, Hye-Ryun;Cha, Wansik
    • 방사성폐기물학회지
    • /
    • 제18권4호
    • /
    • pp.497-508
    • /
    • 2020
  • In the geochemical field, the chemical speciation of hexavalent uranium (U(VI)) has been widely investigated by performing measurements to determine its luminescence properties, namely the excitation, emission, and lifetime. Of these properties, the excitation has been relatively overlooked in most time-resolved laser fluorescence spectroscopy (TRLFS) studies. In this study, TRLFS and continuous-wave excitation-emission matrix spectroscopy are adopted to characterize the excitation properties of U(VI) surface species that interact with amorphous silica. The luminescence spectra of U(VI) measured from a silica suspension and silica sediment showed very similar spectral shapes with similar lifetime values. In contrast, the excitation spectra of U(VI) measured from these samples were significantly different. The results show that distinctive excitation maxima appeared at approximately 220 and 280 nm for the silica suspension and silica sediment, respectively.

Oxygen Plasma Characterization Analysis for Plasma Etch Process

  • Park, Jin-Su;Hong, Sang-Jeen
    • 동굴
    • /
    • 제78호
    • /
    • pp.29-31
    • /
    • 2007
  • This paper is devoted to a study of the characterization of the plasma state. For the purpose of monitoring plasma condition, we experiment on reactive ion etching (RIE) process. Without actual etch process, generated oxygen plasma, measurement of plasma emission intensity. Changing plasma process parameters, oxygen flow, RF power and chamber pressure have controlled. Using the optical emission spectroscopy (OES), we conform to the unique oxygen wavelength (777nm), the most powerful intensity region of the designated range. Increase of RF power and chamber pressure, emission intensity is increased. oxygen flow is not affect to emission intensity.

Modified Principal Component Analysis for In-situ Endpoint Detection of Dielectric Layers Etching Using Plasma Impedance Monitoring and Self Plasma Optical Emission Spectroscopy

  • Jang, Hae-Gyu;Choi, Sang-Hyuk;Chae, Hee-Yeop
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.182-182
    • /
    • 2012
  • Plasma etching is used in various semiconductor processing steps. In plasma etcher, optical- emission spectroscopy (OES) is widely used for in-situ endpoint detection. However, the sensitivity of OES is decreased if polymer is deposited on viewport or the proportion of exposed area on the wafer is too small. Because of these problems, the object is to investigate the suitability of using plasma impedance monitoring (PIM) and self plasma optical emission spectrocopy (SPOES) with statistical approach for in-situ endpoint detection. The endpoint was determined by impedance signal variation from I-V monitor (VI probe) and optical emission signal from SPOES. However, the signal variation at the endpoint is too weak to determine endpoint when $SiO_2$ and SiNx layers are etched by fluorocarbon on inductive coupled plasma (ICP) etcher, if the proportion of $SiO_2$ and SiNx area on Si wafer are small. Therefore, modified principal component analysis (mPCA) is applied to them for increasing sensitivity. For verifying this method, detected endpoint from impedance monitoring is compared with optical emission spectroscopy.

  • PDF

Optical Interferometry as Electrochemical Emission Spectroscopy of Metallic alloys in Aqueous Solutions

  • Habib, K.;AI-Mazeedi, H.
    • Corrosion Science and Technology
    • /
    • 제2권6호
    • /
    • pp.277-282
    • /
    • 2003
  • Holographic interferometry, an electromagnetic method, was used to study corrosion of carbon steel, aluminum and copper nickel alloys in NaOH, KCI and $H_2SO_4$ solutions respectively. The technique, called electrochemical emission spectroscopy, consisted of in-situ monitoring of changes in the number of fringe evolutions during the corrosion process. It allowed a detailed picture of anodic dissolution rate changes of alloys. The results were compared to common corrosion measurement methods such as linear polarization resistance measurements and electrochemical impedance spectroscopy. A good agreement between both data was found, thus indicating that holographic interferometry can be a very powerful technique for in-situ corrosion monitoring.

Field Emission Characteristics of Nitrogen-Doped and Micro-Patterned Diamond-Like Carbon Films Prepared by Pulsed Laser Deposition

  • Shin, Ik-Ho;Lee, Taek-Dong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2000년도 제1회 학술대회 논문집
    • /
    • pp.133-134
    • /
    • 2000
  • Effect of nitrogen doping on field emission characteristics of patterned Diamond-like Carbon (DLC) films was studied. The patterned DLC films were fabricated by the method reported previously[1]. Nitrogen doping in DLC film was carried out by introducing $N_2$ gas into the vacuum chamber during deposition. Higher emission current density of $0.3{\sim}0.4$ $mA/cm^2$ was observed for the films with 6 at % N than the undoped films but the emission current density decreased with further increase of N contents. Some changes in CN bonding characteristics with increasing N contents were observed. The CN bonding characteristics which seem to affect the electron emission properties of these films were studied by Raman spectroscopy, x-ray photoemission spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). The electrical resistivity and the optical band gap measurements showed consistence with the above analyses.

  • PDF