• Title/Summary/Keyword: Emission pollutants

Search Result 626, Processing Time 0.027 seconds

Addition Effect of the Deposition and Buoyancy Terms in Modeling Turbulence Diffusion of Hazardous Air Pollutants (유해 대기오염물질의 난류확산 수치모의에서 침적한과 부력항 추가에 따른 효과)

  • Won, Gyeong-Mee;Lee, Hwa-Woon;Ji, Hyo-Eun;Kim, Cheol-Hee;Song, Chang-Keun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.1
    • /
    • pp.73-84
    • /
    • 2006
  • Hazardous Air Pollutants (HAPs) are characterized by being relatively heavier and denser than that of ambient air due to the various reasons such as higher molecular weight, low temperature and other complicated chemical transformations (Witlox, 1994). In an effort to investigate transport and diffusion from instantaneous emission of heavy gas, Lagrangian Particle Dispersion Model (LPDM) coupled with the RAMS output was employed. Both deposition process and buoyancy term were added on the atmospheric diffusion equations of LPDM, and the locations and concentrations of dense gas particle released from instantaneous single point source (emitting initially for 10 minutes only) were analyzed. The result overall shows that adding deposition process and buoyancy terms on the diffusion equation of LPDM has very small but detectable effect on the vertical and horizontal distribution of Lagrangian particles that especially transported for a fairly long traveling time. Also the slumping of dense gas can be found to be ignored horizontally compared to the advection by the horizontal wind suggesting that it was essential to couple the Lagrangian particle dispersion model coupled with the RAMS model in order to explain the dispersion of HAPs more accurately. However, during the initial time of instantaneous emission, buoyancy term play an important role on the vertical locations of dense particles for near surface atmosphere and around source area, indicating the importance of densities of HAPs in the beginning stage or short duration for the risk assessment of HAPs or management of heavy vapors during the explosive accidents.

Pollutant Sources Contribution Analysis of PM2.5 using The CMB Receptor Model (CMB 수용모델을 이용한 PM2.5의 오염원 기여도 분석)

  • Koo, Tai-Wan;Hong, Min-Sun;Moon, Su-Ho;Kim, Ho-Jung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.866-875
    • /
    • 2019
  • In this study, The Chemical Mass Balance (CMB) model was used to identify pollutant sources and their contributions to $PM_{2.5}$. The contribution rankings by emission source in A city were ash dust (30.1%) > biomass burning (21.9%) > secondary pollutants (21.1%) > mobile source (19.3%) > area sources (7.6%), and The emission sources increased from the contribution of the CMB model and the Clean Air Policy Support System (CAPSS) emissions were biomass burning and secondary pollutants, and The emission sources reduced were mobile source, ash dust, and area sources.

A Study on Drone Flight Trajectory for Accurate Detection of Air Pollutant Emission Designation (정확한 대기오염물질 배출 지정 탐지를 위한 드론 비행 궤도에 관한 연구)

  • Kim, Suyeong;Lee, Sukhoon;Jeong, Dongwon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.15-17
    • /
    • 2021
  • This paper proposes a drone flight trajectory method for accurate air pollutant emission designation detection. In areas with many factories, such as industrial complexes, there are workplaces that illegally emit air pollutants in a situation where monitoring is neglected. In the past, studies have been actively conducted to measure air pollutants in these areas using drones. The measurement method using a drone uses a method of detecting pollution by stopping around the chimney of a factory, but it has a problem in that the detection of air pollutants is inaccurate depending on environmental factors such as air pressure and wind. Therefore, this paper proposes a drone flight trajectory method for accurate air pollutant emission designation detection. This paper devises a screw orbit flight method in which a drone flies upward while rotating the chimney, and the total area of the chimney is detected and measured considering environmental factors. In the experiment, our proposal shows a higher performance than the existing method.

  • PDF

Evaluation of Green House Gases (GHGs) Reduction Plan in Combination with Air Pollutants Reduction in Busan Metropolitan City in Korea

  • Cheong, Jang-Pyo;Kim, Chul-Han;Chang, Jae-Soo
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.4
    • /
    • pp.228-236
    • /
    • 2011
  • Since most Green House Gases (GHGs) and air pollutants are generated from the same sources, it will be cost-effective to develop a GHGs reduction plan in combination with simultaneous removal of air pollutants. However, effects on air pollutants reduction according to implementing any GHG abatement plans have been rarely studied. Reflecting simultaneous removal of air pollutants along with the GHGs emission reduction, this study investigated relative cost effectiveness among GHGs reduction action plans in Busan Metropolitan City. We employed the Data Envelopment Analysis (DEA), a methodology that evaluates relative efficiency of decision-making units (DMUs) producing multiple outputs with multiple inputs, for the investigation. Assigning each GHGs reduction action plan to a DMU, implementation cost of each GHGs reduction action plan to an input, and reduction potential of GHGs and air pollutants by each GHGs reduction action plan to an output, we calculated efficiency scores for each GHGs reduction action plan. When the simultaneous removal of air pollutants with the GHGs reduction were considered, green house supply-insulation improvement and intelligent transportation system (ITS) projects had high efficiency scores for cost-positive action plans. For cost-negative action plans, green start network formation and running, and daily car use control program had high efficiency scores. When only the GHGs reduction was considered, project priority orders based on efficiency scores were somewhat different from those when both the removal of air pollutants and GHGs reduction were considered at the same time. The expected action plan priority difference is attributed to great difference of air pollutants reduction potential according to types of energy sources to be reduced.

Study on Fuel Specificity and Harmful Air Pollutants Factor of Agglomerated Wood Charcoal (시중에 유통되고 있는 성형목탄의 연료특성과 유해인자에 대한 연구)

  • JEOUNG, Taek Yong;YANG, Seung Min;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.253-266
    • /
    • 2020
  • This study selected three types of agglomerated wood charcoal (Agglomerated wood charcoal with charcoal powder, Carbonized wood briquette, Ignition-type of perforated charcoal) that are in circulation in Korea among fuel-type wood products and analyzed the fuel characteristics, harmful substance content, and emissions of air pollutants generated by combustion. The first results showed that charcoal-grilled carbon, which is the raw material of charcoal, produced higher CO than saw-billed carbon. The second result is that the emission standards of air pollutants generated by the combustion of molded wood coal are not up to the emission standards of nitrogen oxides and sulfur oxides in the entire product, compared with the emission criteria of the atmospheric environment preservation method (based on 2019, carbon monoxide: 200 ppm, nitrogen oxides, 150 ppm sulfur oxides: 100 ppm), but the carbon dioxide moulding and carbon dioxide levels were not up. Based on the analysis of combustion gas generated during combustion derived from this study, future research is needed for comparing with the emission standards of pellets, which are wood products for fuel, among the existing biomass burning standards and for reducing carbon monoxide generated during incomplete combustion of agglomerated wood charcoal.

A Study on the Improvement of Indoor Air Quality in Apartment Buildings (공동주택의 실내공기환경 개선에 관한 연구)

  • Lee, S.H.;Park, J.C.;Rhee, E.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.397-412
    • /
    • 1996
  • This study aims to present the fundamental strategies to improve the Indoor Air Quality (IAQ) in apartment buildings. To investigate the concentration of indoor air pollutants such as radon, formaldehyde, and VOCs, both the document survey and the field measurement were conducted. In addition, to identify the source of the air pollutants, the laboratory experiment was carried out for various building materials. Finally, the minimum period to be reserved befor3e building occupation to ensure healthy IAQ, which largely depends on the ventilation rates, was simulated using a simple compuer program. The results of this study can be summarized as follows: 1. In case of newly-constructed apartment houses, concentrations of formaldehyde, VOCs and radon were found to exceed the standard. Meanwhile, at existing apartment houses, concentrations of VOCs, particularly toluene and xylene, highly exceeded the standasrd level. Concentrations of formaldehyde and radon, however, had been lowered according to the duration of occupation. 2. The laboratory experiment of concentration of pollutants per square meter of building material surface area showed that radon gas was much emitted from the gypsumboard; formaldehyde from flooring and wallpaper; and VOCs from paints and kitchen furnishings. The emission rates of formaldehyde and VOCs were proportional to air temperature. 3. According to the simulation of the minimum period to be reserved before occupation, newly-constructed airtight houses required about 190-200 days, and naturally ventialted houses with fully-open-windows required about 20-45days, in order to keep the level of radon gas lower than standard. Therefore, with the current practice, the date of occupation should be delayed for about 15 days.

  • PDF

A Case Study on Health Impact Assessment of Hazardous Air Pollutants in Industrial Complex Development Plan (산업단지 계획 시 유해대기오염물질에 대한 건강영향평가 사례 연구)

  • Kim, Sang-Mok;Son, Eun-Seong;Seo, Young-Kyo;Baek, Sung-Ok
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.6
    • /
    • pp.616-625
    • /
    • 2019
  • Health impact assessment is implemented within the Environmental impact assessment for the purpose of minimizing health damage by predicting the impact on human health following implementation of the development project. In health impact assessment, manual revision is required due to the lack of consistency in the method of estimating hazardous air pollutants emissions. This study estimated the emissions by calculating the emissions of hazardous air pollutants based on the actual industrial complex development cases and completed health impact assessments. As a result of risk assessment based on exposure concentration using CALPUFF model, the risk assessment results were different for each of the emission estimation methods, and manual improvement on the emission estimation method is needed.

A Study on Reduction Effects of Air Pollutant Emissions by Automotive Fuel Standard Reinforcement (자동차연료 기준강화에 따른 대기오염물질 배출량 저감효과)

  • Lim, Cheol-Soo;Hong, Ji-Hyung;Kim, Jeong-Soo;Lee, Jong-Tae;Lim, Yun-Sung;Kim, Sang-Kyu;Jeon, Sang-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.2
    • /
    • pp.181-190
    • /
    • 2011
  • The air pollutants from vehicle exhaust gas are affected by many factors including fuel qualities, engine and vehicle technologies, driving patterns. In particular, fuel qualities and after-treatment devices could directly affect the emission level of pollutants. The pollutant reduction characteristics that caused by enforced fuel quality standard were analyzed. Three types of test fuel were selected in accordance with Korean automotive fuel standard in 2006, 2009, 2012 and used for vehicle emission test in chassis dynamometer. European COPERT correction equation of fuel impact was considered as reference information to quantify the vehicle emission test results. The contribution rates of exhaust emission by COPERT correction equation showed that aromatic compounds and oxygen contents in gasoline fuel was most important. In case of diesel fuel, cetane index and polycyclic aromatic compounds accounted for the greater part. The exhaust emission effects by COPERT correction equation revealed that CO and VOC was increased 0.86%, 1.57% respectively in after 2009 gasoline when compared to before 2009 gasoline fuel. In case of light-duty diesel vehicle CO, VOC and PM were decreased in range of 3~7%. The result from this study could be provided for developing future fuel standards and be used to fundamental information for Korean clean air act.

Study of the cap-and-trade system against the air pollutants in the Seoul Metropolitan Area and suggestion for its enforcement throughout South Korea (수도권 대기오염물질 배출권거래제에 대한 고찰 및 총량제 확대 시행을 위한 제언)

  • Park, Min Ha;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.15 no.4
    • /
    • pp.159-171
    • /
    • 2019
  • The cap-and-trade system against the air pollutants in the Seoul Metropolitan Area (SMA), Korea has been implemented since 2008 and will be implemented other areas in Korea on 2020. In this study, to identify the outcome and effectiveness of the cap-and-trade system in the SMA, (1) the rate of change for NOx and SOx emissions, (2) differences between the real emission and allocated amount, and (3) the status of trading are reviewed. It was found that the NOx and SOx emissions from the sources under the cap-and-trade system decreased in the SMA but the reduction was mainly due to the reduction of fuel usage not related to the system. It was found that the average percentage of annual emission in the SMA to the allocated amount between 2008 and 2018 was 66.9% for NOx and 69.3% for SOx, respectively. It suggests that there was over allocation of the emission amounts. The average trading prices in the SMA were 0.193 $/kg for NOx and 0.128 $/kg for SOx, far lower than those in RECLAIM, 131.942 $/kg and 81.677 $/kg, respectively. It was suggested that (1) the cap system for NOx and SOx emissions should be implemented only for the area with high emission ratio from large point sources, (2) the trade system is not suitable for the effective implementation of the cap system, and (3) Korean government should not allow over allocation in order to ensure sound market function without delaying the introduction of technology.

Characteristics of Size Distribution and Fugitive Emissions of Particulate Matter in Foundries (주물사업장의 입자상물질 입경분포 및 비산배출 특성)

  • Park, Jeong-Ho;Jang, Min-Jae;Kim, Hyoung-Kab
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.1
    • /
    • pp.30-37
    • /
    • 2016
  • Objectives: This study was performed to measure and evaluate the concentration, size distribution and fugitive emission of particulate matter from process operations at foundries. Methods: Particle matter was collected from three foundries, and samples were also collected from a background site for calculating the fugitive emission concentration of the foundries. For the collection of the samples, a Nanosampler cascade impactor was used. Results: The concentration of TSP in the samples collected from the three foundries was $0.675{\sim}1.222mg/m^3$, $PM_{10}$ was $0.525{\sim}1.018mg/m^3$ and $PM_{2.5}$ was $0.192{\sim}0.615mg/m^3$. The mass size distribution was bimodal or monomodal with maximum peak at two stage(size $2.5{\sim}10{\mu}m$). The mass median aerodynamic diameter(MMAD) was $1.80{\sim}3.98{\mu}m$. The fugitive emission concentration of TSP varies in the range of 0.65 to $1.21mg/m^3$, which exceeds the emission standard of fugitive dust($0.5mg/m^3$). Conclusions: Particle concentration and size is an important industrial hygiene factor to protect foundry workers. Furthermore, the presence of high emission of particulate pollutants has a significant negative impact on the ambient air of the study area. Therefore, it is important to improve both the process and prevention facility in oder to reduce particulate pollutants in foundries.