• Title/Summary/Keyword: Emission of Air Pollutants

Search Result 461, Processing Time 0.029 seconds

A Study on Estimation of Air Pollutants Emission from Wood Stove and Boiler, Wood-pellet Stove and Boiler (화목난로∙보일러와 펠릿난로∙보일러 사용에 의한 대기오염물질 배출량 산정에 관한 연구)

  • Kim, Dong-Young;Han, Yong-Hee;Choi, Min-Ae;Park, Sung-Kyu;Jang, Young-Kee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.3
    • /
    • pp.251-260
    • /
    • 2014
  • Biomass burning is one of the significant emission source of PM and CO, but a few studies are reported in Korea. Air pollutants emission from biomass burning such as wood stove and boiler, and wood-pellet stove and boiler were estimated in this study. Activity levels related to biomass burning such as fuel types, amount of fuel loading, and location and temporal variation were investigated by field survey over Korea. Fuel loadings were 14.9 kg/day for wood stove, 31.3 kg/day for wood boiler, 12.8 kg/day for wood-pellet stove, 32.5 kg/day for wood-pellet boiler during the season of active use. These were mostly burned in winter season from october to april of next year. Estimated annual emissions from wood stove & boiler were CO 76,677, $NO_x$ 710, $SO_x$ 70, VOC 20,941, TSP 6,605, PM10 2,921, PM2.5 1,851, and NH3 7 ton/yr, respectively. Emissions from wood-pellet stove and boiler were CO 32,798, $NO_x$ 1,830, $SO_x$ 25, VOCs 5,673, TSP 629, PM10 457, PM2.5 344, and $NH_3$ 2 ton/yr, respectively. When the emission estimates are compared with total emissions of the national emission inventory (CAPSS: Clean Air Policy Support System), Those occupy 12.5%, 2.8% of total national emission for CO and PM10, respectively. These results show wood and wood-pellet burning appliances were one of the major source of air pollution in Korea. In future, these types of heaters need to be regulated to reduce air pollution, especially in suburb area.

Estimation of Air Pollutant Emission Factors for Motorcycle (이륜자동차의 대기오염물질 배출계수 산정을 위한 연구)

  • Lim, Jae-Hyun;Kim, Hyun-Min;Lee, Sang-Moon;Kang, Hee-Jun;Lim, Yoon-Sung;Seo, Choong-Yeol;Kim, Jong-Choon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.1
    • /
    • pp.69-76
    • /
    • 2010
  • While increased use of motor cycles in the recent years for various demands could worsen air quality, only few studies have been conducted on estimation of emission factors and characterization of emissions from motorcycle. In this study, emissions from selected six models of motorcycle based on largest market share and production rate were investigated. To investigate gaseous and carbonaceous air pollutants, such as carbon monoxide (CO), total hydrocarbon (THC), nitrogen oxide ($NO_x$), elemental carbon (EC) and organic carbon (OC), total 124 motorcycles between 2003 and 2007 model year were tested with regulatory driving conditions, such as CVS-40 and CVS-47 mode. These motorcycles were further sub-categorized based on their displacement (< 50 cc, 50~150 cc, and $\geq$ 150 cc), type of stroke (2- and 4 strokes) and model year (2003~2005 and 2006~2007). Tested motorcycles with recent model year (2006~2007) exhibited less emissions of regulatory gaseous and carbonaceous air pollutants compared to old model year (2003~2005). Chemical analysis showed that CO present in highest concentration followed by THC and $NO_x$ for all tested motorcycles. Interestingly, two strokes motorcycle produced higher THC emission but less CO and $NO_x$ than those of four strokes. For all types of displacement and stroke, emission factors (gram per kilometer) of THC and CO except $NO_x$ with recent model year (2006~2007) showed decreased trend compared to old model year (2003~2005). In addition to this, due to mixed combustion between gasoline fuel and lubricant, two strokes motorcycle showed OC > EC emission trend.

Development of Gaseous Pollutant Emission Factor by Incineration of Barley & Wheat among Agricultural Residues (영농부산물 소각에서 발생하는 가스상 오염물질의 배출계수 개발 -맥류를 중심으로-)

  • Min-Wook Kim;Joon-Young Roh;Ji-Yun Woo;Dong-Eun Lee;Hong-Sung Chang;Seung-Jin Kim
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.444-449
    • /
    • 2023
  • The current study involved the calculation of air pollutant emission factors (EFs) generated from the incineration of agricultural residues. The process included sample collection, weight measurement, moisture measurement, incineration system configuration, and concentration measurement. The average CO emission factor of gaseous air pollutants from the incineration of barley and wheat agricultural residues was calculated as 0.08289 kg/kg and 0.06665 kg/kg, respectively, whereas the average NOX emission factor for barley and wheat agricultural residues was determined to be 0.00518 kg/kg and 0.00185 kg/kg, respectively. In the existing air pollutant emission calculation manual, the EF is presented only for barley. Therefore, in this study, we have introduced the EF for wheat, previously absent in the calculation manual. Additionally, the air pollutant calculation manual presents the EF of air pollutants as one value, but in this study, EF values corresponding to 2.5% and 97.5% were presented in consideration of the distribution of experimental values as shown in EMEP/EEA data.

Estimation of Exhaust NOx Emission for Marine Engines (선박엔진의 NOx 배출량 산정)

  • 김대식;엄명도
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.441-445
    • /
    • 2000
  • Considering international status of our country as world class ship builder and geographical characteristics encircled by sea in three facets, controlling of air pollutants emission from marine engines becomes more and more important issue in recent days. Implementation of immediate pollutants emission control regulation and standardization of test and certification procedure are required to reduce air pollution from marine engines. But cost increments due to additional equipment of emission control device and development and certification test expenses as well as depreciation of fuel economy should be considered. To satisfy those air pollution reduction and economic requirements, we should make our own interpretation of IMO standard and implementation schedule depending on our country's status. For this purpose we measured NOx emission from small and middle class marine engines to calculate emission factor and total pollutant emission in our country. With the comparison and analysis of other countries emission control regulation we proposed basic data of total emission from marine engine and future emission control standard in our country. According to our estimation, 62% of total NOx emission of marine engines comes from fishing boat and 38% from commercial vessels. The portion of NOx emission from marine engine is 18.6% of whole country NOx emission. Due to the voyage characteristics of middle and large vessel and necessity of international harmonization of marine engine pollutants emission control standard, it is inevitable to adopt IMO standard for middle and large marine engines. But considering technological and cost effect of fishing boat operating in near sea, it is resonable to set a standard within 80% of measured value at the moment and gradually implement the same IMO standard in near future.

  • PDF

Emission Estimation of Air Pollutants in Kimhae Area (김해시 대기오염물질 배출량 산정)

  • 박종길;김종필;김지형
    • Journal of Environmental Science International
    • /
    • v.7 no.5
    • /
    • pp.647-652
    • /
    • 1998
  • This study is to find out the emission estimation in Kimhae area. For this purpose, the Kimhae statistical yearbook and data of waste facilities issued by Kimhae city and the report on energy census issued by the ministry of trade, industry and energy are used. Each item for the emission estimation is $SO_2$, CO, HC, Nox, TSP from point, line, area sources. The results were as follows; The air pollutants with the highest mont of emission from the emission sources is CO followed by Nox, $SO_2$, TSP, HC in descending order of magnitude. The emission consists of 66.15% of line, 24.65% of area and 9.20% of point sources at Kimhae.

  • PDF

Analytical Methods for Spatial Distribution of Hazardous Air Pollutants (HAPs)

  • Amagai, Takashi
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2010.04a
    • /
    • pp.41-44
    • /
    • 2010
  • Hazardous air pollutants such as benzo[a]pyrene (BaP), benzene, formaldehyde have been concerned about the adverse health effect of long-term exposure. Contour map is useful for finding high-concentration region, emission source, and distributions of HAPs in the ambient air. To make a contour map, we have developed simple analytical method for selected HAPs; polycyclic aromatic hydrocarbons such as BaP, benzene and its derivatives such as toluene and xylene, and aldehydes and ketones. We have applied these methods to investigate air pollution by HAPs in some cities in Japan. The results show that these methods reveal actual emission sources if the PRTR emission report was not submitted.

  • PDF

Estimation of Gaseous Hazardous Air Pollutants Emission from Vehicles (자동차에서 배출되는 가스상 유해대기오염물질 (HAPs) 배출량 추정)

  • Kim, Jeong;Jang, Young-Kee;Choi, Sang-Jin;Kim, Jeong-Soo;Seo, Choong-Yeol;Son, Ji-Hwan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Hazardous Air Pollutants (HAPs) are difficult to measure, analyze and assess for risk because of low ambient concentrations and varieties. Types of HAPs are Volatile organic compounds (VOCs), Polycyclic aromatic hydrocarbon (PAHs) and Aldehydes. HAP emissions from vehicles are a contributor to serious adverse health effects in urban areas. In this study, hazardous air pollutant emissions from road transport vehicles by Non-methane volatile organic compounds (NMVOC) weight fraction and PAHs emission factors are estimated in 2008. The top-five-most hazardous air pollutant emissions were estimated to toluene 864.3 ton/yr, acrolein 690.6 ton/yr, acetaldehyde 554.5 ton/yr, formaldehyde 498.7 ton/yr, propionaldehyde 421.6 ton/yr in 2008. The results for a cancer and non-cancer risk assessment of HAPs emissions show that the major cancer driver is formaldehyde and the non-cancer driver is acrolein.

Direction for the management of air pollutants based on health risk in Korea (위해성을 고려한 대기오염물질의 관리 방향)

  • Kim, Young Ju;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.13 no.2
    • /
    • pp.43-52
    • /
    • 2017
  • Policy direction for the management of air quality in Korea has been on the reduction of the average concentrations of the criteria air pollutants such as sulfur dioxide and fine particles. However, recently, risk based management of air pollutants becomes an important issue. In this study, to develop an effective air quality management policy direction in Korea, (1) the fourth Multiple Air Toxics Exposure Study (MATES IV) carried out in the South Coast Air Quality Management District (SQAQMD) in the USA is reviewed and (2) the results are compared with in these in Seoul and (3) policy directions are suggested. It was found that (1) systematic integrated study comprising of measurement, modeling, emission inventory estimation, and risk assessment was essential to estimate the health risk of air pollutants reliably, (2) cancer risk of diesel particle was dominant over other air pollutants, and (3) health risk based emissions were different from amount based emissions. It was suggested that (1) reducing the exposure from hot spots might important to reduce health risk from air pollutants and (2) an integrated air quality management administration system is important for the efficient management of air pollution.

Emissions of Air Pollutants and Greenhouse Gases from Aircraft Activities at the Gimhae International Airport (김해공항에서 항공기에 의한 대기오염물질과 온실가스의 배출량 산정 및 특성 분석)

  • Song, Sang-Keun;Shon, Zang-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.2
    • /
    • pp.190-202
    • /
    • 2012
  • Emissions of air pollutants and greenhouse gases (GHGs) by aircraft at the Gimhae International Airport (GIA) were investigated using the Emissions and Dispersion Modeling System (EDMS) version 5.1.3. The number of Landing and Take-Off (LTO) at the GIA for aircraft B737 was dominant, accounting for more than 60% of the total LTOs. For air pollutant emissions, CO was the most dominant pollutant by aircraft, followed by $NO_x$, VOCs, $SO_x$, etc. The emissions of CO, $NO_x$, and VOCs in 2009 (and 2010) at the GIA were 974 (968), 447 (433), 118 (122) ton/yr, respectively. The emissions of GHGs such as $CO_2$, $CH_4$, and $N_2O$ in 2009 (and 2010) were 110,795 (111,114), -0.157 (-0.151), and 1,989 (1,998) ton/yr, respectively. The negative number in $CH_4$ emission represents the consumption of atmospheric $CH_4$ in the engine. In addition, the emissions of most air pollutants (except for $PM_{10}$) and GHGs were estimated to be high in Taxi-Out and Climb-Out modes.

Energy Usage and Emissions of Air Pollutants in North Korea (북한 에너지 사용과 대기오염물질 배출 현황)

  • Kim, In-Sun;Lee, Ji-Yi;Kim, Yong-Pyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.3
    • /
    • pp.303-312
    • /
    • 2011
  • Data on the energy usage including biomass, emissions of air pollutants ($SO_x$, $NO_x$, CO), and the air quality in North Korea are analyzed. The energy usage in North Korea has decreased in the 1990s and thus, the emission amount of air pollutants. Coal and biomass constitute a major fraction of energy sources since the 1990s. It is identified that the emission amount of air pollutants per unit energy consumption in North Korea is much higher than South Korea for the period data are available (since 1990) implying that the air pollutant emission management system in North Korea is inadequate. In particular, the amount of biomass burning for household cooking and heating is significant with the huge emissions of air pollutants such as CO and organic species both in the gas and aerosol phase. Furthermore, it is found that the existing energy usage and air pollutant emission data are not consistent in biomass burning related data.