• Title/Summary/Keyword: Emission Trading System (ETS)

Search Result 25, Processing Time 0.021 seconds

REC Distortion as a Quantitative Control Policy due to REC Depreciation (REC 명목가치 하락으로 인한 양적 통제장치로서의 RPS 왜곡)

  • Yu, Jongmin;Lee, Jaeseok
    • Environmental and Resource Economics Review
    • /
    • v.31 no.1
    • /
    • pp.51-83
    • /
    • 2022
  • Renewable Portfolio Standards (RPS), one of the most commonly adopted regulation for renewable energy expansion since 2012, has the obvious advantage of inducing competition in power generation source and alleviating the government's financial burden. However, the abuse of credit multipliers and the use of national Renewable Energy Credits (RECs) have resulted in the distortion of RPS as a quantitative control policy. Just as no face value 10 years ago can hold its real value, this paper highlights for the first time that 27.8% of total renewable obligations over the total RPS period were not actually met due to REC inflation and the consequent decline in the value of renewable energy generation. In addition, the distortion of face/real value of REC causes problems in interoperability with other government policies such as RE100 and Emission Trading System.

A Quantitative Study of the Effects of a Price Collar in the Korea Emissions Trading System on Emissions and Costs (배출권거래제 가격상하한제가 배출량 및 감축비용에 미치는 영향에 대한 정량적 연구)

  • Bae, Kyungeun;Yoo, Taejoung;Ahn, Young-Hwan
    • Environmental and Resource Economics Review
    • /
    • v.31 no.2
    • /
    • pp.261-290
    • /
    • 2022
  • Although market stabilization measures have been triggered in the K-ETS, carbon price is still under uncertainty. Considering Korea's 2030 enhanced reduction target announced in October 2021, it is crucial to have practical stabilization measures to appropriately deal with price uncertainty. This study examines the quantitative effects of a price collar, which is considered as a means of alleviating price uncertainty, on expected cumulative emissions and abatement costs. There are three main scenarios: carbon tax, emissions trading system, and emissions trading system with a price collar. Monte Carlo simulation was conducted to reflect uncertainty in emission. There are several results as follows: 1) In a price collar, domestic emission target is likely to be achieved with a lower expected abatement cost than other scenarios. In addition, there is a small amount of excess emissions in this research and it would be not critical(0.1% excess than target); 2) Prohibiting banking increases the expected abatement cost. This is because firms can not intertemporally reallocate allowances to match the firm's optimal emissions path; 3) With the adoption of a price collar, government's net revenue can be positive even if the government's purchase volume of emissions allowances is more than sales volume. This is because the government sells them at price ceiling and purchases them at price floor.

Legal Review on the Regulatory Measures of the European Union on Aircraft Emission (구주연합의 항공기 배출 규제 조치의 국제법적 고찰)

  • Park, Won-Hwa
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.25 no.1
    • /
    • pp.3-26
    • /
    • 2010
  • The European Union(EU) has recently introduced its Directive 2008/101/EC to include aviation in the EU ETS(emissions trading system). As an amendment to Directive 2003/87/EC that regulates reduction of the green house gas(GHG) emissions in Europe in preparation for the Kyoto Protocol, 1997, it obliges both EU and non-EU airline operators to reduce the emission of the carbon dioxide(CO2) significantly in the year 2012 and thereafter from the level they made in 2004 to 2006. Emission allowances allowed free of charge for each airline operator is 97% in the first year 2012 and 95% from 2013 and thereafter from the average annual emissions during historical years 2004 to 2006. Taking into account the rapid growth of air traffic, i.e. 5% in recent years, airlines operating to EU have to reduce their emissions by about 30% in order to meet the requirements of the EU Directive, if not buy the emissions right in the emissions trading market. However, buying quantity is limited to 15% in the year 2012 subject to possible increase from the year 2013. Apart from the hard burden of the airline operators, in particular of those from non-European countries, which is not concern of this paper, the EU Directive has certain legal problems. First, while the Kyoto Protocol of universal application is binding on the Annex I countries of the Climate Change Convention, i.e. developed countries including all Member States of the European Union to reduce GHG at least by 5% in the implementation period from 2008 to 2012 over the 1990 level, non-Annex I countries which are not bound by the Kyoto Protocol see their airlines subjected to aircraft emissions reductions scheme of EU when operating to EU. This is against the provisions of the Kyoto Protocol dealing with the emissions of GHG including CO2, target of the EU Directive. While the Kyoto Protocol mandates ICAO to set up a worldwide scheme for aircraft emissions to contribute to stabilizing GHG concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system, the EU ETS was drawn up outside the framework of the international Civil Aviation Organization(ICAO). Second, EU Directive 2008/101 defines 'aviation activities' as covering 'flights which depart from or arrive in the territory of a Member State to which the [EU] Treaty applies'. While the EU airlines are certainly subject to the EU regulations, obliging non-EU airlines to reduce their emissions even if the emissions are produced during the flight over the high seas and the airspace of the third countries is problematic. The point is whether the EU Directive can be legally applied to extra-territorial behavior of non-EU entities. Third, the EU Directive prescribes 2012 as the first year for implementation. However, the year 2012 is the last year of implementation of the Kyoto Protocol for Annex I countries including members of EU to reduce GHG including the emissions of CO2 coming out from domestic airlines operation. Consequently, EU airlines were already on the reduction scheme of CO2 emissions as long as their domestic operations are concerned from 2008 until the year 2012. But with the implementation of Directive 2008/101 from 2012 for all the airlines, regardless of the status of the country Annex I or not where they are registered, the EU airlines are no longer at the disadvantage compared with the airlines of non-Annex I countries. This unexpected premium for the EU airlines may result in a derogation of the Kyoto Protocol at least for the year 2012. Lastly, as a conclusion, the author shed light briefly on how the Korean aviation authorities are dealing with the EU restrictive measures.

  • PDF

Analysis of Determinants of Carbon Emissions Considering the Electricity Trade Situation of Connected Countries and the Introduction of the Carbon Emission Trading System in Europe (유럽 내 탄소배출권거래제 도입에 따른 연결계통국가들의 전력교역 상황을 고려한 탄소배출량 결정요인분석)

  • Yoon, Kyungsoo;Hong, Won Jun
    • Environmental and Resource Economics Review
    • /
    • v.31 no.2
    • /
    • pp.165-204
    • /
    • 2022
  • This study organized data from 2000 to 2014 for 20 grid-connected countries in Europe and analyzed the determinants of carbon emissions through the panel GLS method considering the problem of heteroscedasticity and autocorrelation. At the same time, the effect of introducing ETS was considered by dividing the sample period as of 2005 when the European emission trading system was introduced. Carbon emissions from individual countries were used as dependent variables, and proportion of generation by each source, power self-sufficiency ratio of neighboring countries, power production from resource-holding countries, concentration of power sources, total energy consumption per capita in the industrial sector, tax of electricity, net electricity export per capita, and size of national territory per capita. According to the estimation results, the proportion of nuclear power and renewable energy generation, concentration of power sources, and size of the national territory area per capita had a negative (-) effect on carbon emissions both before and after 2005. On the other hand, the proportion of coal power generation, the power supply and demand rate of neighboring countries, the power production of resource-holding countries, and the total energy consumption per capita in the industrial sector were found to have a positive (+) effect on carbon emissions. In addition, the proportion of gas generation had a negative (-) effect on carbon emissions, and tax of electricity were found to have a positive (+) effect. However, all of these were only significant before 2005. It was found that net electricity export per capita had a negative (-) effect on carbon emissions only after 2005. The results of this study suggest macroscopic strategies to reduce carbon emissions to green growth, suggesting mid- to long-term power mix optimization measures considering the electricity trade market and their role.

Green Productivity Analysis of the Logistics Industry for the Global Competitiveness (물류산업의 녹색생산성 평가와 국제경쟁력 강화방안)

  • Choi, Yong-Rok
    • International Commerce and Information Review
    • /
    • v.14 no.4
    • /
    • pp.89-107
    • /
    • 2012
  • Recently, the successful appointment of the general directorate of GCF (Green Climate Fund) in Songdo of Korea made a great history for the golden triangle with GGGI (global Green Growth Institute) and GTC (Green Technology Center). Now, Korea became the Mecca for the global green growth and it gave a great opportunity foe the Korea to lead the global economy in the future. However, to successfully manage the GCF, the Korean government should show their willingness as well as the readiness for the green prowth and green productivity. It is really hard for the Korea, since it takes the second rank for the growth rate of carbon dioxide emission in the world. To overcome this shameful status, it should make the best effort to promote the green productivity, especially in a field of logistics industry, because it takes 21% of global CO2 emission, the second largest portion. The research aims to systematically introduce the Global Malmquist-Luenberger Index (GML) and to evaluate the logistics industry of Korea based on the GML approach. It concludes the innovative technology is utmost important to improve the green productivity of the logistics industry and thus the Korean government should make more aggressive role to fill this missing link in the innovation network.

  • PDF