• Title/Summary/Keyword: Emergent macrophytes

Search Result 21, Processing Time 0.032 seconds

Nutrient Leaching from Leaf Litter of Emergent Macrophyte(Zizania latifolia) and the Effects of Water Temperature on the Leaching Process

  • Park, Sangkyu;Cho, Kang-Hyun
    • Animal cells and systems
    • /
    • v.7 no.4
    • /
    • pp.289-294
    • /
    • 2003
  • To quantify nutrient loading from emergent macrophytes through leaching in the littoral zones of Paldang Reservoir, we conducted incubation experiments using leaf litter of the emergent macrophyte, Zizaniz latifolia. To separate the leaching process from microbial decay, we used $HgCl_2$ to suppress microbial activity during the experiment. We measured electric conductivity, absorbance at 280nm, total nitrogen and dissolved inorganic nitrogen, total phosphorus and soluble reactive phosphorus, Na, K, Mg and Ca amounts in leaf litter and in water. In addition, we examined the effects of water temperature and ion concentrations of ambient water on the leaching process. A total of 6% of the initial ash-free dry mass of leaf litter was lost due to leaching during incubation (four days). Electric conductivity and A280 continued to increase and saturate during the incubation. To compare reaching rates of different nutrients, we fitted leaching dynamics with a hyperbolic saturation function [Y=AㆍX/(B+X)]. From these fittings, we found that ratios of leaching amounts to nutrient concentration in the litter were in the order of K > Na > Mg > P > Ca > N. Leaching from leaf litter of Z. latifolia was dependent on water temperature while it was not related with ion concentrations in the ambient water. Our results suggest that the leaching process of nutrients, especially phosphorus, from aquatic macrophytes provides considerable contribution to the eutrophication of the Paldang Reservoir ecosystem.

Effects of Macrophytes on Budget of Matters in Lake Paldang (대형수생식물이 팔당호의 물질 수지에 미치는 영향)

  • Park, Hae-Kyung;Jung, Dong-Il;Byeon, Myeong-Seop
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.85-92
    • /
    • 2006
  • To evaluate the primary production and nutrient uptake of macrophytes in Lake Paldang, this study investigate the vegetation areas of six dominant aquatic plants including Typha angustifolia, Zizania latifolia, Phragmites australis, Trapa japonica, Nelumbo nucifera and Savinia natans, and contents of carbon, nitrogen and phosphorus of each macrophyte. Total vegetation area of six dominant aquatic plants was 1.37 $km^2$. Among them, Typha angustifolia was the most wide-distributed species which occupied the 46.7% of total vegetation area. Littoral zone of South Han river had the largest vegetation area with 0.458 $km^2$, and North Han river, Kyungan river and confluence area in the order named. The results of the contents of carbon, nitrogen and phosphorus of macrophytes showed that the carbon contents of emergent macrophytes was higher than that of other life-forms. The nitrogen content of Salvinia natans, free-floating macrophyte was highest and that of Typha angustifolia, emergent macrophyte was lowest. The phosphorus content of Trapa japonica showed the highest content of phosphorus among six macrophytes and emergent macrophytes such as Zizania latifolia and Phragmites australis showed lower contents of phosphorus than other life-forms. The annual net primary production of macrophytes in Lake Paldang, 2004, was calculated as 758.4 ton C $yr^{-1}$ and the annual net nitrogen and phosphorus uptake of macrophyte was 16,921 kg $yr^{-1}$ and 1,841.0 kg P $yr^{-1}$ respectively. Comparing the total budget of organic carbon, nitrogen and phosphorus in Lake Paldang, the amount of primary production and nutrient uptake by macrophytes take a small portion in total budget implying macrophytes do not play an important role in budget of matters in river-type lake, Lake Paldang.

A Case Report on the Constructed Wetland for the Growth of Sphagnum palustre (물이끼(Sphagnum palustre) 생육이 가능한 인공습지 사례보고)

  • Hong, Mun Gi;Kim, Jae Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.6
    • /
    • pp.93-107
    • /
    • 2013
  • Construction of an artificial wetland for the growth of Sphagnum palustre with emergent macrophytes (Phragmites australis, Typha angustifolia, and Zizania latifolia) was firstly tried and the growth of those plant components according to various environmental combinations has been monitored for three years. Above-ground dry weight of Z. latifolia ($1,500g/m^2$) was higher than T. angustifolia ($900g/m^2$) and P. australis ($500g/m^2$) under most environmental conditions. In overall, planted emergent macrophytes seemed to prefer polishing sand without moss peat as a substrate and relatively deep water-depth condition (20cm) rather than shallow water-depth (5cm). Despite of high calcium content in inflow water (> 15ppm) into the constructed wetland, S. palustre populations have survived in most experimental plots during the monitoring period. Substrate layer including moss peat with high surface-area might play a role as an ion-filter. After three years, relatively thicker litter-layer in Z. latifolia plots due to vigorous growth appeared to heavily depress S. palustre by physical compressing and complete shading processes. Most of all, for the continuous growth of S. palustre, physio-chemical characteristics of water and substrate must be carefully managed. In addition, companion emergent species should be also cautiously selected not to depress S. palustre by much litter production. We suggest P. australis and T. angustifolia as companion species rather than Z. latifolia.

Importance of substrate material for sustaining the bryozoan Pectinatella magnifica following summer rainfall in lotic freshwater ecosystems, South Korea

  • Choi, Jong-Yun;Joo, Gea-Jae;Kim, Seong-Ki;Hong, Dong-Gyun;Jo, Hyunbin
    • Journal of Ecology and Environment
    • /
    • v.38 no.3
    • /
    • pp.375-381
    • /
    • 2015
  • We investigated the influence of summer rainfall on Pectinatella magnifica colonies in lotic ecosystems. Of the examined substrate materials, branches and aquatic macrophytes supported more colonies of P. magnifica than that by stones or artificial materials. The influence of rainfall on P. magnifica colonies differed in accordance with the type of substrate material at each study site. In the Geum River, little difference was noted in the number of P. magnifica colonies on branches before ($mean{\pm}SE$, $24{\pm}7.3$ individuals) and after rainfall ($20{\pm}8.4$ ind.); other substrate types supported fewer colonies of P. magnifica after rainfall. In contrast, in the Miryang River, rainfall had minimal effect on the number of P. magnifica colonies supported by macrophytes ($13{\pm}3.8$ and $12{\pm}4.3$ ind., respectively). Artificial material was more abundant in the Banbyeon Stream where it was able to support more colonies of P. magnifica. We found that the structure of different substrates sustains P. magnifica following rainfall. In the Miryang River, free-floating and submerged plants with a relatively heterogeneous substrate surface were the dominant macrophytes, whereas in the Geum River, simple macrophytes (i.e., emergent plants) were dominant. Therefore, we conclude that the substrate type on which P. magnifica grows plays an important role in resisting physical disturbances such as rainfall.

Changes in Phytoplankton Community Structure after Floating-Islands Construction at a Small Pond (소규모 연못에서 식물섬 조성 후 식물플랑크톤 군집구조의 변화)

  • Lee, Eun Joo;Lee, Hyo Hye Mi;Kwon, Peter;Suck, Jung Hyun;Ryu, Ji Hoon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • The effects of floating islands on the changes in phytoplankton community structure were investigated in a small artificial pond. The floating islands planted with various emergent macrophytes covered 35% of total water surface area of the pond. Total 17 genera and 25 species of phytoplankton were found in the pond, of which Dinophyceae was 1 genera and 1 species, Cyanophyceae 1 genera and 1 species, Bacillariophyceae 6 genera and 8 species, and Chlorophyceae 9 genera and 15 species. Dominant phytoplanktons under floating islands were changed from Aphanizomenon sp. as a Cyanophyceae to Golenkinia radiata, Kirchneriella contorta and Micractinium pusillum as a Chlorophyceae for 56 days after the construction of floating islands on July 24, 2001. The changes of dominant phytoplanktons of the control without floating islands were similar to those under floating islands in July and August, but Aphanizomenon sp. was rapidly increased in the control sites in September. About 99% of the cell number of Aphanizomenon sp. was disappeared for a month after construction of floating islands. Species diversity of phytoplankton under the floating islands of Iris pseudoacorus was higher than those of other macrophytes as well as the control without floating islands. The cell numbers of Cyanophyceae and Chlorophyceae were fewer under the floating islands of I. pseudoacorus than those of other macrophytes. Our results showed that the floating islands could be a useful eco-technique for the control of water bloom by Cyanophyceae and Chlorophyceae in a pond ecosystem.

Sediment Material Contents and Settling Velocity of Particle Material in the Constructed Wetland in Sookcheon in the Cachment of Daecheong Reservoir (대청호 유역 소옥천 인공습지에서 부유물질 침강속도 및 퇴적물의 물질함량)

  • Je-Chul Park;Dong-Sup Kim;Kwang-Soon Choi
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.3
    • /
    • pp.244-250
    • /
    • 2022
  • The changes in COD, TOC, T-P, and T-N concentrations were investigated for 2 years in the constructed wetland of Sookcheon, which was installed to improve the water quality of Daecheong reservoir in South Korea. In order to evaluate the pollution level of sediments in the wetland, settling velocity of particulate material (4 times) and sedimet material contents (6 times) were measured. COD and TOC concentrations increased slightly as they passed through wetlands, and T-N and T-P concentration tended to decrease. The material content (COD, T-P, T-N) of aquatic plants was higher in floating-leaved and free-floating macrophytes than emergent macrophytes. As a result of measuring the sedimentation rate of suspended materials, most of the suspended materials introduced into constructed wetlands were sedimented at a rapid rate in the first sedimentation site. In addition, sediment pollution of T-P and T-N in constructed wetland was in severe pollution. The sediments containing a large amount of T-P and T-N were eluted by physical and chemical environmental changes, which is likely to act as internal pollution sources in wetlands.

Shoot Cutting Effects on the Productivity and Nutrient Removal of Some Wetland Plants (습지식물의 지상부 제거가 생산력과 영양염류 제거량에 미치는 효과)

  • 정연숙;오현경;노찬호;황길순
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.4
    • /
    • pp.459-465
    • /
    • 1999
  • This work focused on the effects of the timing and the frequency of shoot cutting to maximize the productivity and the nutrient removal of three emergent macrophytes, Phragmites communis, Zizania latifolia and Typha angustifolia in natural wetlands. Shoot cutting significantly enhanced biomass production and resulted in more nitrogen and phosphorus removal from water in these three experimental species, compared to those of control. However, the frequency and the timing of shoot cutting, and the enhancement ratio were different among three species. For Phragmites stands, the highest productivity was 1.9 times of control in June treatment of the first year experiment, while 1.3 times in May treatment of the second year experiment. Zizania and Typha stands were both 1.2 times of control in August treatment and June and August treatment. Calculating the total annual removal rate of nitrogen and phosphorus based on the highest productivities among treatments, in Phragmites stands, 2.0 times of nitrogen and 1.8 times of phosphorus were removed in the first year, and both 1.4 times in the second year experiment. Likewise, for nitrogen and phosphorus; 2.4 and L.8 times in Zizania stands, and 1.8 and 1.9 times in Typha stands were removed. Overall, these results suggested that cutting treatment of shoots be effective. Thus, shoot cutting of two times during a growing season were recommended to maximize the effects: that is, in May or June, and October for Phragmites stands, and in August and October fur Zizania and Typha stands.

  • PDF

Decomposition and Nutrient Dynamics of Aquatic Macrophytes in Lake Paldang

  • Shin, Jin-Ho;Yang, Keum-Chul;Yeon, Myung-Hun;Shim, Jae-Kuk
    • Journal of Ecology and Environment
    • /
    • v.30 no.3
    • /
    • pp.231-236
    • /
    • 2007
  • This study examined the decomposition of blades and culms of aquatic emergent plant species, Zizania latifolia, Phragmites communis and Typha angustata, and changes in nutrient contents during decomposition. Z. latifolia, P. communis and T. angustata were the most frequently occurring species in Lake Paldang of Han River, Korea. Experiments were carried out from July 27 to December 14, 2005 in Lake Paldang using the litter bag method. The remaining masses of blade litter of each species at the end of experimental period were 21.2% of initial dry weight in Z. latifolia, 32.5% in P. communis, and 44.7% in T. angustata. In addition, the remaining mass of culm was 22.6% of initial dry mass in Z. latifolia, 56.4% in P. communis, and 38.1% in T. angustata. During the litter decomposition period, P, K, Na, and Mg concentration decreased rapidly within 10 days, but Ca and Mg concentration declined slowly. K contents remained below 10% of initial values in all litter samples retrieved during decomposition, whereas Ca and Mg concentration remained above 40% and 50% during decomposition in all three species. Na, P and Mn contents in litter varied among species and plant parts. P concentration in culms of P. communis remained at about 60% of initial concentration throughout the study, but the remaining P content in culms of Z. latifolia was only 10% of the original value at the end of the study period. The Mn concentration in blades of P. communis increased about 15-fold relative to the initial content by the end of experiment.

The Construction and Management of Artificial Wetland Using Emergent Macrophytes for High Biomass Production (대형정수식물을 활용한 높은 생산성의 인공습지 조성 및 관리)

  • Hong, Mun Gi;Heo, Young Jin;Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.16 no.1
    • /
    • pp.61-72
    • /
    • 2014
  • To present a guideline on the construction and management of artificial wetlands for high biomass production, three emergent macrophytes (Phragmites australis, PA; Typha angustifolia, TA; and Zizania latifolia, ZL) were planted under two substrates conditions (general soil with and without moss peat) and two water levels (5 cm and 20 cm) and monitored for three years. ZL showed greater growth performance rather than the others not only at early growth phase in the first year [shoot height, 200 cm; above-ground dry weight (AGDW), 500 $g/m^2$] but also in the last year (ZL, 1,100 $g/m^2$; TA, 770 $g/m^2$; and PA, 450 $g/m^2$ of AGDW). ZL with rapid growth at the early growth phase was not affected by naturally introduced weeds, whereas slower and poorer growth of PA and TA at the early growth phase resulted in relatively higher introduction and establishment of natural weeds. In turn, such introduced weeds negatively contributed to the growth of PA and TA particularly under shallow water (5 cm) with the substrate condition including moss peat. We suggest a plant material with rapid and great growth at the early phase such as ZL for reducing possible negative influences by the natural weeds and wild animals for high biomass production in constructed wetlands. A pre-growing process in greenhouse prior to planting might be an useful option to raise the competitiveness of those species when planting PA and/or TA. In addition, we recommend that integrated weed management system with utilizing various options at the most appropriate timing must be applied for maintaining sustainable high biomass production at the artificial wetlands.

Leaf Litter Breakdown of Emergent Macrophytes by Aquatic Invertebrates in the Lower Nakdong River (낙동강 하류에서 수서무척추동물에 의한 정수식물의 낙엽분해)

  • Kim, Gu-Yeon;Joo, Gea-Jae;Kim, Hyun-Woo;Shin, Geon-Seong;Yoon, Hae-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.3 s.99
    • /
    • pp.172-180
    • /
    • 2002
  • Leaf litter breakdown rates of the Phragmites australis, Zizania latifolia and Typha angustifolia were determined at the lower Nakdong River from Nov. 1998 to Sept. 1999. The relationship between leaf litter breakdown of three and abundance of aquatic invertebrates was investigated. Aquatic invertebrates collected in the litterbags were 11 family, 11 species (mean density: $222\;ind./m^2$ , n = 792), and Chironomidae was dominant. Mean density of Chironomidae in the litterbags were different according to the aquatic plant species: Z. latifolia ($180\;ind./m^2$, n = 264) T. angustifolia ($187\;ind./m^2$, n = 264) P. australis ($95\;ind./m^2$, n = 264). The breakdown of Z. latifolia was the shortest, and that of T. angustifolia was shorter than P. australis. Overall, the breakdown rate at floating layer was faster than that of submerged layer in all of three species and differences of the breakdown rate between open bags and closed three species and differences of the breakdown rate between open bags and closed bags were not found.