• Title/Summary/Keyword: Emergency Diesel Generator

Search Result 74, Processing Time 0.032 seconds

A Study of Quasi-Resonant Flyback Power Supply with Very Wide Input Voltage (광범위 입력전압을 갖는 준공진형 플라이백 파워서플라이의 연구)

  • Lee, Yong-Geun;La, Jae-Du
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.3
    • /
    • pp.143-145
    • /
    • 2015
  • One of the many problems besetting the converter designer is being able to design a switching power supply that can operate in the range of very wide input voltage. Specially, in an emergency diesel generator system, the AVR(Automatic Voltage Regulator) is a regulator which regulates the output voltage of the generator at a nominal constant voltage level. In addition, the AVR must be operated in very wide input voltage. Therefore, a power supply for the AVR must be operated at the very wide input voltage range. In this paper, a quasi-resonant flyback power supply with very wide input voltage range is proposed. Also, the performance of the proposed power supply is demonstrated through experiments.

LOSS OF OFFSITE POWER TEST EXPERIENCE FOR YGN 4

  • Chi, Sung-Goo;Sung, Kang-Sik;Kim, Se-Chang;Kim, Eul-Ki;Eom, Young-Meen;Park, Young-Boo
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.230-234
    • /
    • 1995
  • The loss of offsite power test was successfully performed on YGN 4 to demonstrate that the reactor can be shutdown and the RCS can be maintained in a hot standby condition following a loss of all offsite Alternating Current (AC) power. Following the loss of main generator and all offsite AC power, the ensile emergency diesel generators were automatically started and the plant was stabilized via natural circulation. Plant conditions were maintained in hot standby for at least 30 minutes before offsite power was restored. Thus, the capability of equipment, controls and instrumentation necessary to remove decay heat from the core using only ensile emergency power was demonstrated, thereby satisfying all objectives and acceptance criteria of the test.

  • PDF

A Risk Impact Assessment According to the Reliability Improvement of the Emergency Power Supply System of a Nuclear Power Plant (원자력발전소 비상전력계통 강화 방안에 따른 리스크 영향 평가)

  • Jeon, Ho-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.224-228
    • /
    • 2012
  • According to the results of Probabilistic Safety Assessment(PSA) for a Nuclear Power Plant(NPP), an Emergency Power Supply(EPS) system has been considered as one of the most important safety system. Especially, the interests in the reliability of the EPS system have been increased after the severe accidents of Fukushima Daiichi. Firstly, we performed the risk assessment and the importance analysis of the EPS system based on the PSA models of the reference plant, which is the Korean standard NPP type. Considering a portable Diesel Generator(DG) system as the reliability reinforcement of the EPS system, we modified the PSA models and performed the risk impact assessment and the importance analysis. Although the reliability of the potable DG could be about 20% of the reliability of the alternative AC DG, we identified that Core Damage Frequency(CDF) was decreased by at least 4.6%. In addition, the risk impacts due to the unavailability of the EPS system on CDF were decreased.

Comparison of event tree/fault tree and convolution approaches in calculating station blackout risk in a nuclear power plant

  • Man Cheol Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.141-146
    • /
    • 2024
  • Station blackout (SBO) risk is one of the most significant contributors to nuclear power plant risk. In this paper, the sequence probability formulas derived by the convolution approach are compared with those derived by the conventional event tree/fault tree (ET/FT) approach for the SBO situation in which emergency diesel generators fail to start. The comparison identifies what makes the ET/FT approach more conservative and raises the issue regarding the mission time of a turbine-driven auxiliary feedwater pump (TDP), which suggests a possible modeling improvement in the ET/FT approach. Monte Carlo simulations with up-to-date component reliability data validate the convolution approach. The sequence probability of an alternative alternating current diesel generator (AAC DG) failing to start and the TDP failing to operate owing to battery depletion contributes most to the SBO risk. The probability overestimation of the scenario in which the AAC DG fails to run and the TDP fails to operate owing to battery depletion contributes most to the SBO risk overestimation determined by the ET/FT approach. The modification of the TDP mission time renders the sequence probabilities determined by the ET/FT approach more consistent with those determined by the convolution approach.

Development of Operation Scenarios by HILS for the Energy Storage System Operated with Renewable Energy Source (HILS를 이용한 신재생 에너지원이 포함된 에너지 저장시스템의 운영 시나리오 개발)

  • Shin, Dong-Cheol;Jeon, Jee-Hwan;Park, Sung-Jin;Lee, Dong-Myung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.224-232
    • /
    • 2018
  • According to government policy, renewable energy facility such as solar power generation is being implemented for newly constructed buildings. In recent years, the introduction of Energy Storage System (ESS) served as an emergency power for replacing an existing diesel generator has been increasing. Furthermore, in order to expand the efficacy of the ESS operation, operation in combination with renewable energy sources such as solar and wind power generation is increasing. Hence, development of the ESS operation algorithms for emergency mode as well as the peak power cut mode, which is the essential feature of ESS, are necessary. The operational scenarios of ESS need to consider load power requirement and the amount of the power generation by renewable energy sources. For the verification of the developed scenarios, tests under the actual situation are demanded, but there is a difficulty in simulating the emergency operation situation such as system failure in the actual site. Therefore, this paper proposes simulation models for the HILS(Hardware In the Loop Simulation) and operation modes developed through HILS for the ESS operated with renewable energy source under peak power reduction and emergency modes. The paper shows that the ESS operation scenarios developed through HILS work properly at the actual site, and it verifies the effectiveness of the control logic developed by the HILS.

Development of Excitation System for Class 1E (Class 1E용 여자시스템 개발)

  • Shin, Man-Su;Lee, Joo-Hyun;Ryu, Ho-Seon;Lim, Ick-Hun;Jeong, Tae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1953-1954
    • /
    • 2008
  • The excitation system for class 1E has been developed to apply to the nuclear power plant emergency diesel generator by utilizing the existing digital excitation system. The additional mission was to evaluate the excitation system of safety. It is the safety analysis of the excitaton system, the verification test, the aging test, the safety requirement test and so on. The verification test is classified of hardware and software part for detail.

  • PDF

Study of Flyback Switching Power Supply With Very Wide Input Voltage Range (매우 넓은 입력전압 범위를 갖는 스위치모드 플라이백 파워서플라이에 대한 연구)

  • La, Jae-Du;Lee, Chun-Taek;Park, Hyung-Nam;Lee, Yong-Geun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1008-1009
    • /
    • 2015
  • An emergency diesel generator system is an independent source of power that supports important electrical systems on loss of normal power supply. AVR(Automatic Voltage Regulator) is a regulator which regulates the output voltage at a nominal constant voltage level. Specially, a power supply for the AVR must be operated at the very wide input range. In this paper, a flyback power supply with very wide input voltage range is proposed.

  • PDF

Development of Reliability Management System of Emergency Diesel Generator for Nuclear power plants (원전 비상디젤발전기 신뢰도 관리시스템 개발)

  • Ju, Song-Jae;Lee, Jeong-Il;Sin, Jin-Ho;Kang, Joo-Yeong;Yi, Bong-Jae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.115-117
    • /
    • 2005
  • 본 논문은 원자력발전소 비상디젤발전기의 신뢰도 및 성능변화 추이를 감시하고, 이에 필요한 데이터를 관리하는 비상디젤발전기 신뢰도 프로그램 개발에 관하여 기술하였다. 이 프로그램은 인트라넷 기술을 이용하여 신뢰도 감시, 성능 감시, 그리고 관련정보로 크게 3가지 모듈로 구분하여 개발하였다. 현재 이를 통하여 원전 비상디젤발전기의 운전 및 정기점검 데이터를 입력 관리할 수 있도록 서비스를 개시하였으며, 이미 기존에 입력된 데이터를 이용하여 신뢰도 및 이용 불능도를 계산할 수 있고 또한 성능변화 추이를 감시할 수 있다.

  • PDF

Evaluation of Probability of Failure on Demand (PFD) for Emergency Diesel Generator Excitation Control System (디젤발전기 여자시스템의 고장확률 분석에 관한 연구)

  • Lee, Joo-Hyun;Lim, Ick-Hun;Rhew, Ho-Sun;Huh, Tae-Young
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1934-1935
    • /
    • 2007
  • 본 논문은 원자력발전소 안전계통인 비상전원 공급용 디젤발전기의 여자시스템에 대해서 신뢰성 불럭선도를 이용하여 시스템을 모델링하고, 신뢰성 분석을 수행하고 그 결과 기동요구시 실패확률을 산출하는 방법과 결과를 기술하였다. 비상디젤발 전기 여자시스템을 구성하는 모든 부품의 고장률을 Telcordia SR-332 기준서의 부품수 방법을 이용하여 분석하고 FMEA (Failure Mode Effect Analysis)를 수행하며 IEC 61508에서 제시하고 있는 기동요구 시 실패확률(Probability of Failure on Demand, PFD)을 산출하였다.

  • PDF

Dynamic reliability analysis framework using fault tree and dynamic Bayesian network: A case study of NPP

  • Mamdikar, Mohan Rao;Kumar, Vinay;Singh, Pooja
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1213-1220
    • /
    • 2022
  • The Emergency Diesel Generator (EDG) is a critical and essential part of the Nuclear Power Plant (NPP). Due to past catastrophic disasters, critical systems of NPP like EDG are designed to meet high dependability requirements. Therefore, we propose a framework for the dynamic reliability assessment using the Fault Tree and the Dynamic Bayesian Network. In this framework, the information of the component's failure probability is updated based on observed data. The framework is powerful to perform qualitative as well as quantitative analysis of the system. The validity of the framework is done by applying it on several NPP systems.