• Title/Summary/Keyword: Embryonic stem cell self-renewal

Search Result 32, Processing Time 0.027 seconds

The expression and functional roles of microRNAs in stem cell differentiation

  • Shim, Jiwon;Nam, Jin-Wu
    • BMB Reports
    • /
    • v.49 no.1
    • /
    • pp.3-10
    • /
    • 2016
  • microRNAs (miRNAs) are key regulators of cell state transition and retention during stem cell proliferation and differentiation by post-transcriptionally downregulating hundreds of conserved target genes via seed-pairing in their 3' untranslated region. In embryonic and adult stem cells, dozens of miRNAs that elaborately control stem cell processes by modulating the transcriptomic context therein have been identified. Some miRNAs accelerate the change of cell state into progenitor cell lineages—such as myoblast, myeloid or lymphoid progenitors, and neuro precursor stem cells—and other miRNAs decelerate the change but induce proliferative activity, resulting in cell state retention. This cell state choice can be controlled by endogenously or exogenously changing miRNA levels or by including or excluding target sites. This control of miRNA-mediated gene regulation could improve our understanding of stem cell biology and facilitate their development as therapeutic tools. [BMB Reports 2016; 49(1): 3-10]

Cancer Stem Cells and Response to Therapy

  • Tabarestani, Sanaz;Ghafouri-Fard, Soudeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.5947-5954
    • /
    • 2012
  • The cancer stem cell (CSC) model states that cancers are organized in cellular hierarchies, which explains the functional heterogeneity often seen in tumors. Like normal tissue stem cells, CSCs are capable of self-renewal, either by symmetric or asymmetric cell division, and have the exclusive ability to reproduce malignant tumors indefinitely. Current systemic cancer therapies frequently fail to eliminate advanced tumors, which may be due to their inability to effectively target CSC populations. It has been shown that embryonic pathways such as Wnt, Hedgehog, and Notch control self-renewal and cell fate decisions of stem cells and progenitor cells. These are evolutionary conserved pathways, involved in CSC maintenance. Targeting these pathways may be effective in eradicating CSCs and preventing chemotherapy or radiotherapy resistance.

miRNA-222 Modulates Differentiation of Mouse Embryonic Stem Cells

  • Ahn, Hee-Jin;Jung, Jee-Eun;Park, Kyung-Soon
    • Development and Reproduction
    • /
    • v.15 no.4
    • /
    • pp.331-338
    • /
    • 2011
  • MicroRNAs (miRNAs) function as a key regulator of diverse cellular functions. To find out novel miRNAs that promote the differentiation of mouse embryonic stem cells (mESCs), we compared the miRNAs expression profiles of mESCs under self-renewal vs. differentiation states. We noticed that miR-222 was highly expressed during the differentiation of mESCs. Quantitative RT-PCR analysis revealed that expression of miR-222 was up-regulated during the embryonic bodies formation and retinoic acid -dependent differentiation. When miR-222 was suppressed by antogomiR-222, the differentiation of mESCs was delayed compared to control. Self-renewal marker expression or cell proliferation was not affected but the expression of lineage specific marker was suppressed by the treatment of miR-222 inhibitor during the differentiation of mESCs. Taken together, these results suggest that miR-222 functions to promote the differentiation of mESCs by regulating expression of differentiation related genes.

Global Proteomic Analysis of Mesenchymal Stem Cells Derived from Human Embryonic Stem Cells via Connective Tissue Growth Factor Treatment under Chemically Defined Feeder-Free Culture Conditions

  • Seo, Ji-Hye;Jeon, Young-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.126-140
    • /
    • 2022
  • Stem cells can be applied usefully in basic research and clinical field due to their differentiation and self-renewal capacity. The aim of this study was to establish an effective novel therapeutic cellular source and create its molecular expression profile map to elucidate the possible therapeutic mechanism and signaling pathway. We successfully obtained a mesenchymal stem cell population from human embryonic stem cells (hESCs) cultured on chemically defined feeder-free conditions and treated with connective tissue growth factor (CTGF) and performed the expressive proteomic approach to elucidate the molecular basis. We further selected 12 differentially expressed proteins in CTGF-induced hESC-derived mesenchymal stem cells (C-hESC-MSCs), which were found to be involved in the metabolic process, immune response, cell signaling, and cell proliferation, as compared to bone marrow derived-MSCs(BM-MSCs). Moreover, these up-regulated proteins were potentially related to the Wnt/β-catenin pathway. These results suggest that C-hESC-MSCs are a highly proliferative cell population, which can interact with the Wnt/β-catenin signaling pathway; thus, due to the upregulated cell survival ability or downregulated apoptosis effects of C-hESC-MSCs, these can be used as an unlimited cellular source in the cell therapy field for a higher therapeutic potential. Overall, the study provided valuable insights into the molecular functioning of hESC derivatives as a valuable cellular source.

Transcriptional Properties of the BMP, $TGF-\beta$, RTK, Wnt, Hh, Notch, and JAK/STAT Signaling Molecules in Mouse Embryonic Stem Cells

  • Rho Jeung-Yon;Bae Gab-Yong;Chae Jung-Il;Yu Kweon;Koo Deog-Bon;Lee Kyung-Kwang;Han Yong-Mahn
    • Reproductive and Developmental Biology
    • /
    • v.30 no.2
    • /
    • pp.143-156
    • /
    • 2006
  • Major characteristics of embryonic stem cells (ESCs) are sustaining of sternness and pluripotency by self-renewal. In this report, transcriptional profiles of the molecules in the developmentally important signaling pathways including Wnt, BMP4, $TGF-\beta$, RTK, Hh, Notch, and JAK/STAT signaling pathways were investigated to understand the self-renewal of mouse ESCs (mESCs), J1 line, and compared with the NIH3T3 cell line and mouse embryonic fibroblast (MEF) cells as controls. In the Wnt signaling pathway, the expression of Wnt3 was seen widely in mESCs, suggesting that the ligand may be an important regulator for self-renewal in mESCs. In the Hh signaling pathway, the expression of Gli and N-myc were observed extensively in mESCs, whereas the expression levels of in a Shh was low, suggesting that intracellular molecules may be essential for the self-renewal of mESCs. IGF-I, IGF-II, IGF-IR and IGF-IIR of RTK signaling showed a lower expression in mESCs, these molecules related to embryo development may be restrained in mESCs. The expression levels of the Delta and HESS in Notch signaling were enriched in mESCs. The expression of the molecules related to BMP and JAK-STAT signaling pathways were similar or at a slightly lower level in mESCs compared to those in MEF and NIH3T3 cells. It is suggested that the observed differences in gene expression profiles among the signaling pathways may contribute to the self-renewal and differentiation of mESCs in a signaling-specific manner.

Generation and Characterization of a Monoclonal Antibody with Specificity for Mycoplasma arginini

  • Son, Yeon-Sung;Hong, Hyo-Jeong
    • Journal of Microbiology
    • /
    • v.45 no.6
    • /
    • pp.547-552
    • /
    • 2007
  • Previously, we generated monoclonal antibodies (MAbs) that bound to the surface of human embryonic stem cells (hESCs) in an attempt to discover new hESC-specific surface markers. In this study, MAb 47-235 (IgG1, ${\kappa}$) was selected for further characterization. The MAb bound to the surface of undifferentiated hESCs but did not bind to mouse ESCs or mouse embryonic fibroblast cells in flow cytometric analysis. The antibody immunoprecipitated a 47 kDa protein from the lysates of cell surface-biotinylated hESCs. Identification of the protein by quadrupole time of flight tandem mass spectrometry revealed that 47-235 binds to Ag 243-5 protein of Mycoplasma arginini. BM-Cyclin treatment of the hESCs that reacted with 47-235 resulted in loss of mycoplasma DNA and the reactivity to 47-235. Nevertheless, the hESCs that were reactive to 47-235 maintained self-renewal and pluripotency and thus could be differentiated into three embryonic germ layers.

Kinetic Properties of Extracted Lactate Dehydrogenase and Creatine Kinase from Mouse Embryonic Stem Cell- and Neonatal-derived Cardiomyocytes

  • Zonouzi, Roseata;Ashtiani, Saeid Kazemi;Hosseinkhani, Saman;Baharvand, Hossein
    • BMB Reports
    • /
    • v.39 no.4
    • /
    • pp.426-431
    • /
    • 2006
  • Embryonic stem cells (ESCs), representing a population of undifferentiated pluripotent cells with both self-renewal and multilineage differentiation characteristics, are capable of spontaneous differentiation into cardiomyocytes. The present study sought to define the kinetic characterization of lactate dehydrogenase (LDH) and creatine kinase (CK) of ESC- and neonatal-derived cardiomyocytes. Spontaneously differentiated cardiomyocytes from embryoid bodies (EBs) derived from mouse ESC line (Royan B1) and neonatal cardiomyocytes were dispersed in a buffer solution. Enzymes were extracted by sonication and centrifugation for kinetic evaluation of LDH and CK with spectrophotometric methods. While a comparison between the kinetic properties of the LDH and CK of both groups revealed not only different Michaelis constants and optimum temperatures for LDH but also different Michaelis constants and optimum pH for CK, the pH profile of LDH and optimum temperature of CK were similar. In defining some kinetic properties of cardiac metabolic enzymes of ESC-derived cardiomyocytes, our results are expected to further facilitate the use of ESCs as an experimental model.

Expression of the C1orf31 Gene in Human Embryonic Stem Cells and Cancer Cells

  • Ahn, Jin-Seop;Moon, Sung-Hwan;Yoo, Jung-Ki;Jung, Hyun-Min;Chung, Hyung-Min;Kim, Jin-Kyeoung
    • Reproductive and Developmental Biology
    • /
    • v.32 no.4
    • /
    • pp.223-227
    • /
    • 2008
  • Human embryonic stem (ES) cells retain the capacity for self-renewal, are pluripotent and differentiate into the three embryonic germ layer cells. The regulatory transcription factors Oct4, Nanog and Sox2 play an important role in maintaining the pluripotency of human ES cells. The aim of this research was to identify unknown genes upregulated in human ES cells along with Oct4, Nanog, and Sox2. This study characterizes an unknown gene, named chromosome 1 open reading frame 31 (C1orf31) mapping to chromosome 1q42.2. The product of C1orf31 is the hypothetical protein LOC388753 having a cytochrome c oxidase subunit VIb (COX6b) motif. In order to compare expression levels of C1orf31 in human ES cells, human embryoid body cells, vascular angiogenic progenitor cells (VAPCs), cord-blood endothelial progenitor cells (CB-EPCs) and somatic cell lines, we performed RT-PCR analysis. Interestingly, C1orf31 was highly expressed in human ES cells, cancer cell lines and SV40-immortalized cells. It has a similar expression pattern to the Oct4 gene in human ES cells and cancer cells. Also, the expression level of C1orf31 was shown to be upregulated in the S phase and early G2 phase of synchronized HeLa cells, leading us to purpose that it may be involved in the S/G2 transition process. For these reasons, we assume that C1orf31 may play a role in on differentiation of human ES cells and carcinogenesis.

Statins and Their Effects on Embryonic Stem Cells (스타틴 그리고 배아줄기세포에서의 작용)

  • Lee, Mi-Hee;Han, Yong-Mahn;Cho, Yee-Sook
    • Development and Reproduction
    • /
    • v.11 no.2
    • /
    • pp.59-66
    • /
    • 2007
  • Understanding molecular mechanisms that control embryonic stem cell (ESC) self-renewal and differentiation is important for the development of ESC-based therapies. Statins, inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase), potently reduce cholesterol level. As well as inhibiting cholesterol synthesis, statins inhibit other intermediates in the mevalonate pathway such as farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP), major substrates for protein isoprenylation. Studies showed that pleiotropic effects of statins beyond cholesterol lowering property arise from inhibition of protein isoprenylation that is involved in various cellular functions including proliferation and differentiation. It has been determined that statins have inhibitory effect on ESC self-renewal and stimulatory effect on ESC differentiation into adipogenic/osteogenic lineages. Importantly, statins mediate downregulation of ESC self-renewal by inhibiting RhoA-dependent signaling, independently of their choresterol-lowering properties. Understanding statin's actions on ESCs may provide important insights into the molecular mechanisms that regulate self-renewal or differentiation of ESCs.

  • PDF

G protein-coupled receptors in stem cell maintenance and somatic reprogramming to pluripotent or cancer stem cells

  • Choi, Hye Yeon;Saha, Subbroto Kumar;Kim, Kyeongseok;Kim, Sangsu;Yang, Gwang-Mo;Kim, BongWoo;Kim, Jin-Hoi;Cho, Ssang-Goo
    • BMB Reports
    • /
    • v.48 no.2
    • /
    • pp.68-80
    • /
    • 2015
  • G protein-coupled receptors (GPCRs) are a large class of transmembrane receptors categorized into five distinct families: rhodopsin, secretin, adhesion, glutamate, and frizzled. They bind and regulate 80% of all hormones and account for 20-50% of the pharmaceuticals currently on the market. Hundreds of GPCRs integrate and coordinate the functions of individual cells, mediating signaling between various organs. GPCRs are crucial players in tumor progression, adipogenesis, and inflammation. Several studies have also confirmed their central roles in embryonic development and stem cell maintenance. Recently, GPCRs have emerged as key players in the regulation of cell survival, proliferation, migration, and self-renewal in pluripotent (PSCs) and cancer stem cells (CSCs). Our study and other reports have revealed that the expression of many GPCRs is modulated during the generation of induced PSCs (iPSCs) or CSCs as well as during CSC sphere formation. These GPCRs may have crucial roles in the regulation of self-renewal and other biological properties of iPSCs and CSCs. This review addresses the current understanding of the role of GPCRs in stem cell maintenance and somatic reprogramming to PSCs or CSCs.