• Title/Summary/Keyword: Embryogenesis

Search Result 550, Processing Time 0.101 seconds

Assessment of Relationship between Fyn-related Kinase Gene Polymorphisms and Overweight/Obesity in Korean Population

  • Jung, Mi-Young;Kim, Bum-Shik;Kim, Youn-Jung;Koh, In-Song;Chung, Joo-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.2
    • /
    • pp.83-87
    • /
    • 2008
  • The fyn-related kinase (FRK) belongs to the tyrosine kinase family of protein kinases. Recent studies have shown that Frk affects pancreatic beta cell number during embryogenesis and promotes beta cell cytotoxic signals in response to streptozotocin. To investigate the genetic association between FRK polymorphisms and the risk of obesity in Korean population, single nucleotide polymorphisms (SNPs) in the FRK gene region were selected and analyzed. The body mass index (BMI) was calculated, and biochemical data (systolic blood pressure, diastolic blood pressure, hemoglobin A1C, triglyceride, total cholesterol, high density lipoprotein, and low density lipoprotein) of blood sample from each subject were also measured. One hundred fifty five healthy control and 204 overweight/obesity subjects were recruited. Genotype frequencies of six SNPs [rs6568920 (+8391G>A), rs3756772 (+56780A>G), rs3798234 (+75687C>T), rs9384970 (+68506G>A), rs1933739 (+72978G>A), and rs9400883 (+75809A>G)] in the FRK gene were determined by Affymetrix Targeted Genotyping Chip data. According to the classification of Korean Society for the Study of Obesity, control (BMI 18 to < 23) and overweight/obesity (BMI$\geq$23) subjects were recruited. For the analysis of genetic data, EM algorithm, SNPStats, Haploview, HapAnalyzer, SNPAnalyzer, and Helixtree programs were used. Multiple logistic regression analysis (codominant, dominant, and recessive models) was performed. Age and gender as covariates were adjusted. For biochemical data, Student's t test was used. The mean value of BMI in the control and overweigh/obesity groups was 21.1${\pm}$1.2 (mean${\pm}$SD) and 25.6${\pm}$2.0, respectively. All biochemical data of the overweight/obesity group were statistically significance, compared with the control group. Among six SNPs, two linkage disequilibrium (LD) blocks were discovered. One block consisted of rs1933739 and rs9400883, and the other comprised rs3756772 and rs3798234. One SNP (rs9384970, +68506G>A) showed an association with overweight/obesity in the codominant model (p=0.03). Interestingly, the AA genotype distribution in the overweight/obesity group (n=7, 3.5%) was higher than those in the control group (n=1, 0.6%), which is not found in either Japanese or Chinese subjects. Therefore, the AA genotype of rs9384970 may be a risk factor for development of obesity in Korean population. The results suggest that FRK may be associated with overweight/obesity in Korean population.

Development of the Eggs and Pre-Leptocephalus Larvae by Natural Spawning of Artificially-Matured Japanese Eel, Anguilla japonica (인위적 성숙 유도된 뱀장어 Anguilla japonica의 자연산란에 의한 난발생과 Pre-leptocephalus 자어의 발달)

  • Kim, Dae-Jung;Kang, Eon-Jong;Bae, Jun-Young;Park, Min-Woo;Kim, Eung-Oh
    • Journal of Aquaculture
    • /
    • v.20 no.3
    • /
    • pp.160-167
    • /
    • 2007
  • Embryonic and pre-leptocephalic larvae development of the eel, Anguilla japonica, are described following natural fertilization in the indoor tank of $23^{\circ}C$ water temperature. Following a routine hormone treatment technique for the brood stock, female eels were artificially matured by weekly intramuscular injections of salmon pituitary extracts (SPE) at a dosage of 20 mg/kg body weight (BW) for a total of 10-14 doses to induce ovarian maturation, while male eels received weekly intramuscular injections of human chorionic gonadotropin (HCG) at a dosage of 1 IU/g BW for a total of 6-10 doses to induce testicular maturation in a separate aquarium and induced natural spawning. Fertilized eggs of about 1.0 mm in diameter were pelagic and showed a typical discoidal cleavage. Hatching occurs 38 hrs after fertilization at a water temperature of $23^{\circ}C$. The newly hatched larvae measured about 3.0 mm in total length and the number of myomeres averages 42. Their mouths and anuses were opened at 4.5 days and the yolk sacs of the pre-leptocephalic larvae were almost absorbed at 6.5 days after hatching. Pre-leptocephalic larvae survive for 14.5 days. At this time they are $5.87{\pm}0.25mm$ in total length and have about 98 myomeres. However, morphological characterization of embryonic and pre-leptocephalic larvae were not different between natural fertilization and artificial fertilization by the dry method.

Anomalous somatic embryos formation and plant regeneration from the cultures of immature embryos of Camellia japonica L. (동백나무 미숙배 배양으로부터 비정상 체세포배 형성과 식물체 재생)

  • Choi, Jong-Hye;Kwon, Suk-Yoon;Choi, Pil-Son
    • Journal of Plant Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.258-262
    • /
    • 2011
  • Embryogenic callus was induced from the cultures of immature embryos of Camellia japonica L. on Murashige & Skoog's (MS) solid medium supplemented with 1 mg/L 2,4-dichlorophenoxy acetic acid (2,4-D), and then the embryogenic callus was proliferated on same medium for 4 weeks over. The embryogenic callus was sub-cultured on MS basal medium without 2,4-D to produce coyledonary stage of somatic embryo. The frequency (%) of somatic embryogenesis was 25.1%, and the majority of somatic embryos formed had a abnormal morphology with cupshaped cotyledon (48.3%), one cotyledon (12.6%), three cotyledons (9.4%), four cotyledons (1.9%), whereas was only normal morphology with two cotyledon (27.5%). When the somatic embryos with normal or abnormal cotyledons transfer to MS basal medium or $\frac{1}{2}$ MS medium with/or without plant growth regulators ($GA_3$, IBA) for regeneration, the frequency (%) of two-cotyledon embryos regenerated into plantlets was higher 11.1% than one cotyledon (0.0~8.3 %), three cotyledons (0.0~5.8%), four cotyledons (0.0%), cup-shaped (0.3~4.2%). These results demonstrated that the anomalous cotyledons of somatic embryos could caused to decrease the rate of plant regeneration.

Plant regeneration from protoplasts-derived from embryogenic callus of Citrus (감귤 embryogenic callus 원형질체 배양에 의한 식물체 재분화)

  • An, Hyun-Joo;Lee, Dong-Hoon;Lee, Ji-Hyun;Choi, Young-Hun;Kang, Byoung-Cheorl;Park, Hyo-Guen
    • Journal of Plant Biotechnology
    • /
    • v.35 no.1
    • /
    • pp.81-86
    • /
    • 2008
  • This study describes conditions for plant regeneration from protoplasts-derived from embryogenic callus of satsuma mandarin. Plants were generated via somatic embryogenesis. Protoplasts isolated directly from nucellar callus induced from immature ovule of satsuma mandarin cv. Okitsu (Citrus unshiu Marc.) were cultured in 0.6M $BH_3$ medium. Cell division and plating efficiency were affected by protoplast culture method. The liquid over solid method was the most effective for formation of microcalli. Most of microcalli grew rapidly and transferred onto embryoid formation medium. Optimum embryoid formation medium was MT medium containing 1.5 g/L malt extract, 0.146 M sucrose and the medium for plantlet regeneration was MS medium containing 0.09M sucrose, 1.0 mg/L $GA_3$. No differences were noticed in growth habits and leaf characters such as shape, thickness, and colour between protoplast-derived plants and nucellar seedlings. This plant regeneration system from protoplasts-derived from embryogenic callus provides an alternative way for producing new scion and rootstock cultivar from citrus species which can not be crossed.

Telomeric Dynamics and Telomerase Activity in Early Bovine Embryos (소의 초기 배 발생단계별 Telomeric DNA 함량 및 Telomerase Activity 분석)

  • Jung, Yei-Hwa;Lee, Soo-Hee;Cho, Sang-Rae;Kong, Il-Keun;Cho, Jae-Dong;Sohn, Sea-Hwan
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.36 no.2
    • /
    • pp.101-109
    • /
    • 2009
  • Objective: This study was carried out to analyze the amount of telomeric DNA and telomerase activity in early bovine embryos. Methods: The amount of telomeric DNA in early bovine embryos at the 8 cell, morula and blastocyst stages was analyzed by Quantitative Fluorescence In Situ Hybridization (Q-FISH) technique using a bovine telomeric DNA probe. Telomerase activity was analyzed by Telomeric Repeat Amplification Protocol (TRAP assay). Results: The relative amount of telomeric DNA in early bovine embryos was gradually increased from 8 cell to blastocyst stage. It was not significantly associated with the grade of embryo quality. While telomerase activity was detected in the early bovine embryos at these stages, it significantly increased at morula stage and showed maximum activity at the blastocyst stage. Conclusion: The amount of telomeric DNA and the telomerase activity of bovine embryos increase during the progression of early embryogenesis, suggesting a positive correlation between telomeric DNA and telomerase activity. The telomerase activity seems to increase to maintain the levels of telomeric DNA through embryo development which are required for extensive cell division.

Suppression of the Epidermal Growth Factor-like Domain 7 and Inhibition of Migration and Epithelial-Mesenchymal Transition in Human Pancreatic Cancer PANC-1 Cells

  • Wang, Yun-Liang;Dong, Feng-Lin;Yang, Jian;Li, Zhi;Zhi, Qiao-Ming;Zhao, Xin;Yang, Yong;Li, De-Chun;Shen, Xiao-Chun;Zhou, Jin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.4065-4069
    • /
    • 2015
  • Background: Epidermal growth factor-like domain multiple 7 (EGFL7), a secreted protein specifically expressed by endothelial cells during embryogenesis, recently was identified as a critical gene in tumor metastasis. Epithelial-mesenchymal transition (EMT) was found to be closely related with tumor progression. Accordingly, it is important to investigate the migration and EMT change after knock-down of EGFL7 gene expression in human pancreatic cancer cells. Materials and Methods: EGFL7 expression was firstly testified in 4 pancreatic cancer cell lines by real-time polymerase chain reaction (Real-time PCR) and western blot, and the highest expression of EGFL7 was found in PANC-1 cell line. Then, PANC-1 cells transfected with small interference RNA (siRNA) of EGFL7 using plasmid vector were named si-PANC-1, while transfected with negative control plasmid vector were called NC-PANC-1. Transwell assay was used to analyze the migration of PANC-1 cells. Real-time PCR and western blotting were used to detect the expression change of EGFL7 gene, EMT markers like E-Cadherin, N-Cadherin, Vimentin, Fibronectin and transcription factors like snail, slug in PANC-1, NCPANC-1, and si-PANC-1 cells, respectively. Results: After successful plasmid transfection, EGFL7 gene were dramatically knock-down by RNA interference in si-PANC-1 group. Meanwhile, migration ability decreased significantly, compared with PANC-1 and NC-PANC-1 group. Meanwhile, the expression of epithelial phenotype marker E-Cadherin increased and that of mesenchymal phenotype markers N-Cadherin, Vimentin, Fibronectin dramatically decreased in si-PANC-1 group, indicating a reversion of EMT. Also, transcription factors snail and slug decreased significantly after RNA interference. Conclusions: Current study suggested that highly-expressed EGFL7 promotes migration of PANC-1 cells and acts through transcription factors snail and slug to induce EMT, and further study is needed to confirm this issue.

Clinical and molecular biological aspect of the hyaluronidases: basis and clinical overview for oriental medical application

  • Kim, Cheorl-Ho;Lee, Dong-Gyu;Jang, Jun-Hyouk;Kim, Jong-De;Nam, Kyung-Soo;Kim, Jeong-Joong;Park, Jong-Kun;Choo, Young-Kug;Kim, Hyung-Min;Lee, Young-Choon
    • Advances in Traditional Medicine
    • /
    • v.1 no.1
    • /
    • pp.8-27
    • /
    • 2000
  • Components of extracellular matrix and the matrix-degrading enzymes are some of the key regulators of tumor metastasis and angiogenesis. Hyaluronic acid (HA), a matrix glycosaminoglycan, is known to promote tumor adhesion and migration, and its small fragments are angiogenic. Until now, we have compared levels of hyaluronidase, an enzyme that degrade HA, in normal adult prostate, benign prostate hyperplasia and prostate cancer tissues and in conditioned media from epithelial explant cultures, using a substrate (HA)-gel assay and ELISA-like assay (Kim et al., unpublished results). The present review described an overall characterization of hyaluronidases and its application to human diseases. The hyaluronidases are a family of enzymes that have, until recently, deed thorough explication. The substrate for these enzymes, hyaluronan, is becoming increasingly important, recognized now as a major participant in basic processes such as cell motility, wound healing, embryogenesis, and implicated in cancer progression. And in those lower life forms that torment human beings, hyaluronidase is associated with mechanisms of entry and spread, e.g. as a virulence factor for bacteria, for tissue dissection in gas gangrene, as a means of treponema spread in syphilis, and for penetration of skin and gut by nematode parasites. Hyaluronidase also comprises a component of the venom of a wide variety of organisms, including bees, wasps, hornets, spiders, scorpions, sh, snakes and lizards. Of particular interest is the homology between some of these venom hyaluronidases and the enzyme found in the plasma membrane of mammalian spermatozoa, attesting to the ancient nature of the conserved sequence, a 36% identity in a 300 amino acid stretch of the enzyme protein. Clearly, hyaluronidase is of biological interest, being involved in the pathophysiology of so many important' human disorders. Greater effort should be made in studying this family of enzymes that have, until recently, been overlooked. Also, oriental medical application of the hyaluronidase will be discussed with respect to inhibition and suppression of inflammation and malignacy.

  • PDF

Genome-wide survey and expression analysis of F-box genes in wheat

  • Kim, Dae Yeon;Hong, Min Jeong;Seo, Yong Weon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.141-141
    • /
    • 2017
  • The ubiquitin-proteasome pathway is the major regulatory mechanism in a number of cellular processes for selective degradation of proteins and involves three steps: (1) ATP dependent activation of ubiquitin by E1 enzyme, (2) transfer of activated ubiquitin to E2 and (3) transfer of ubiquitin to the protein to be degraded by E3 complex. F-box proteins are subunit of SCF complex and involved in specificity for a target substrate to be degraded. F-box proteins regulate many important biological processes such as embryogenesis, floral development, plant growth and development, biotic and abiotic stress, hormonal responses and senescence. However, little is known about the F-box genes in wheat. The draft genome sequence of wheat (IWGSC Reference Sequence v1.0 assembly) used to analysis a genome-wide survey of the F-box gene family in wheat. The Hidden Markov Model (HMM) profiles of F-box (PF00646), F-box-like (PF12937), F-box-like 2 (PF13013), FBA (PF04300), FBA_1 (PF07734), FBA_2 (PF07735), FBA_3 (PF08268) and FBD (PF08387) domains were downloaded from Pfam database were searched against IWGSC Reference Sequence v1.0 assembly. RNA-seq paired-end libraries from different stages of wheat, such as stages of seedling, tillering, booting, day after flowering (DAF) 1, DAF 10, DAF 20, and DAF 30 were conducted and sequenced by Illumina HiSeq2000 for expression analysis of F-box protein genes. Basic analysis including Hisat, HTseq, DEseq, gene ontology analysis and KEGG mapping were conducted for differentially expressed gene analysis and their annotation mappings of DEGs from various stages. About 950 F-box domain proteins identified by Pfam were mapped to wheat reference genome sequence by blastX (e-value < 0.05). Among them, more than 140 putative F-box protein genes were selected by fold changes cut-offs of > 2, significance p-value < 0.01, and FDR<0.01. Expression profiling of selected F-box protein genes were shown by heatmap analysis, and average linkage and squared Euclidean distance of putative 144 F-box protein genes by expression patterns were calculated for clustering analysis. This work may provide valuable and basic information for further investigation of protein degradation mechanism by ubiquitin proteasome system using F-box proteins during wheat development stages.

  • PDF

Selective and Random Patterning of Programmed Cell Death in Zebrafish Embryonic Development

  • Hwang, Chang-Nam;Kim, Joon;Lee, Sang-Ho
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.118-118
    • /
    • 2002
  • Programmed cell death (PCD) is thought as a well-controlled process by which unwanted cells are selectively eliminated. During the last decade many researches have elucidated molecules and their interactions involved in cell death by using largely in vitro induction of cell death or survival signals in a more defined manner, While these critical information and novel findings provide us with clearer understanding of mechanisms underlying cell death, it does by no means explain how PCD occurs and which cells or tissues are affected during normal embryonic development in vivo. In this study, we used zebrafish to examine whether the PCD is occurring selectively or randomly in developing embryos by whole mount in situ TUNEL analysis with specific markers for neural cells. The result revealed that the degree and distribution of TUNEL staining varied considerably throughout gastrulation stage, and there was also a number of TUNEL-negative embryos. Most of TUNEL-positive cells were scattered randomly throughout the blastoderm. During the gastrulation stage about 75 % of the embryos analyzed exhibited more than 5 TUNEL-positive cells. As the dorsal epiblast begins to thicken rather abruptly near the end of gastrulation, TUNEL-positive cells were mainly located along the dorsal side. Although there were some variations in TUNEL staining during segmentation and pharyngeal stages, TUNEL staining continued to be localized to the central nervous system, and was also detected in the sensory organs, trigeminal ganglions, and the primary sensory neurons. High levels of the cell death in developing brain between 20-somite and prim-6 stages are thought to play a role in the morphogenesis and organization of the brain. At prim-16 stage, cell death is considerably reduced in the brain region. Dying cells are mainly localized to the prospective brain region where ectodermal cells are about to initiate neurogenesis. As development progressed, high levels and more reproducible patterns of cell death were observed in the developing nervous system. Intensive TUNEL staining was restricted to the trigeminal ganglions, the primary sensory neurons, and sensory organs, such as olfactory pits and otic vesicles. Thus, PCD patterning in zebrafish embryos occurs randomly at early stages and becomes restricted to certain region of the embryos. The spatio-temporal pattern of PCD during the early embryonic development in zebrafish will provide basic information for further studies to elucidate genes involved in. regulation of PCD largely unknown in vivo during vertebrate embryogenesis.

  • PDF

Somatic Embryogenesis in Immature Zygotic Embryo Cultures of Korean Soybean (Glycine max L.) Culitivars and Effect of 2,4-Dichlorophenoxyacetic Acid on Somatic Embryo Morphology (한국 품종 대두(Glycine max L) 미숙배로부터 체세포배발생과 배지의 2,4-Dichlorophenoxyacetic Acid 농도가 체세포배의 형태에 미치는 영향)

  • Pil S Choi;Yoong Y. SOH;Duck Y.Choi;ang R. LIU
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.1
    • /
    • pp.7-14
    • /
    • 1994
  • Immature zygotic embryos of five Korean soybean cultivars cultured on Murashige and Skoog's (MS) medium supplemented with various concentrations of 2,4-Dichlorophenoxyacetic acid (2,4-D) produced somatic embryos without forming an intervening callus. The highest frequency (up to 90%) of somatic embryo formation was obtained when zygotic embryos were cultlued on medium containing 1 to 2 mga 2, 0-D in four cultivars. However the frequency was highly variable to the cultivars. Transversely sliced primary somatic embryo halves were also capable of forming secondary embryos at frequencies of up to 70% when cultured on medium containing 0.1 to 1 mg/L 2,4-D. Somatic embryos formed on zygotic embryos cultured on medium containing 0.1 to 0.2 mg/L 2,4-D had two cotyledons more frequently than one horn-type cotyledon and those on medium containing 0.5 to 4mg/L 2,4-LD had a horm-type cotyledon at a prominently higher freequency. However somatic embryos on medium containing 10mg/L or higher concentrations of 2,4-D were usually shunted at the globular stage even after transfer to medium containing lower concentrations of 2,4-D or other growth regulators. non somatic embryos with one or two cotyledons or a hem-type cotyledon were transferred to medium containing $GA_3$, those with two cotyledons converted to plantlets at a higher frequency (25%) than the others.

  • PDF