• Title/Summary/Keyword: Embossing Process

Search Result 128, Processing Time 0.031 seconds

Nano imprinting lithography fabrication for photonic crystal waveguides (나노 임프린트 공정에 의한 광자결정 도파로 제조공정)

  • Jung Une-Teak;Kim Chang-Soek;Jeong Myung-Yung
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.498-501
    • /
    • 2005
  • Photonic crystals, periodic structure with a high refractive index contrast modulation, have recently become very interesting platform for manipulation of light. The existence of a photonic bandgap, a frequency range in which propagation of light is prevented in all direction, makes photonic crystal very useful in application where spatial localization of light is required for waveguide, beam splitter, and cavity. But fabrication of 3 dimensional photonic crystal is still difficult process. a concept that has recently attracted a lot of attention is a planar photonic crystal based on a dielectric membrane, suspended in the air, and perforated with 2 dimensional lattice of hole. We show that the polymer slabs suspended in air with triangular lattice of air hole can exhibit the in-plane photonic bandgap for TE-like modes. The fabrication of Si master with pillar structure using hot embossing process was investigated for 2 dimensional low-index-contrast photonic crystal waveguide.

  • PDF

NUMERICAL SIMULATION OF THERMAL CONTROL OF A HOT PLATE FOR THERMAL NANOIMPRINT LITHOGRAPHY MACHINES (고온 나노임프린트 장비용 핫플레이트의 열제어에 대한 수치모사)

  • Park, G.J.;Kwak, H.S.;Shin, D.W.;Lee, J.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.153-158
    • /
    • 2007
  • Since the introduction of Nanoimprint in the mid-1990s, Nanoimprint lithography, a low-cost, non-convential method, has been the dominant lithography technology that guarantees high-throughput patterning of nanostructures. Based on the mechanical embossing mechanism, Nanoimprint lithography creates the nanopatterns on the polymer material cast on the substrate. In essence, the process needs nanofabrication equipment for printing with the adequate control of temperature, pressure and control of parallels of the stamp and substrate. This article introduce the possibility and reality of the thermal control on the hot plate using a CFD code. Numerical computation has been conducted for assessing the feasibility of a hot plate($120{\times}120\;mm2$). PID control is adopted to ensure high temperature uniformity in several zones. Parallel experiments have also been performed for verifying thermal performance. Not only show the results the optimum number of thermocouples related to controllers but also suggest that the thermal simulation using a CFD code would be an alternative method to design and develop the thermal control equipment in the financial aspect.

  • PDF

The Development of 12.1' SVGA Reflective Color Thin Film Transistor Liquid Crystal Display with The New Structured Reflector and Optimized Optical Films

  • Shin, Jong-Eup;Joo, Young-Kuil;Jang, Yong-Kyu;Kang, Myeon-Koo;Souk, Jun-Hyung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.19-20
    • /
    • 2000
  • We have developed the 12.1" SVGA reflective type color TFT-LCD(Thin Film Transistor - Liquid Crystal Display) with the high aperture ratio and well designed reflector for the applications such as mini note PC, Note PC and electronic book. The panel shows the high reflectance(30%) and contrast ratio(20:1) resulted from optimizing the optical films and designing the embossing shaped reflector. By improving the chromacity, the color reproducibility was increased up to 20%. As removing the backlight unit, we reduced the power consumption, thickness and weight of the panel to 0.8W, 2.2mm, and 250gram, respectively. According to the above performances, we have obtained fabrication process for mass production, and furthermore, could have access to fast market launching.

  • PDF

Fabrication of Cylindrical Microlens Using Slot-die Coating and Thermal Reflow Method (슬롯 다이 코팅과 Thermal Reflow방법을 이용한 Cylindrical 마이크로렌즈 제조)

  • Lee, Jinyoung;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.30-35
    • /
    • 2020
  • A microlens has been fabricated by various methods such as a thermal reflow, hot embossing, diamond milling, etc. However, these methods require a relatively complex process to control the microlens shape. In this work, we report on a simple and cost-effective method to fabricate a cylindrical microlens (CML), which can diffuse light widely. We have employed a slot-die head with the dual plate (a meniscus guide with a protruded μ-tip and a shim with a slit channel) for coating of a narrow stripe using poly(methyl methacrylate) (PMMA). We have shown that the higher the coating gap, the lower the maximum coating speed, which causes an increase in the stripe width and thickness. The coated PMMA stripe has the concave shape. To make it in the shape of a convex microlens, we have applied the thermal reflow method. When the stripe thickness is small, however, its effect is negligible. To increase the stripe thickness, we have increased the number of repeated coating. With this scheme, we have fabricated the CML with the width of 223 ㎛ and the thickness of 7.3 ㎛. Finally, we have demonstrated experimentally that the CML can diffuse light widely, a feature demanded for light extraction efficiency of organic light-emitting diodes (OLEDs) and suppression of moiré patterns in displays.

Fabrication and Characterization of Film Type Light Guide Plates by UV Imprint Lithography (UV 임프린팅법에 의한 필름형 광도광판의 제조 및 특성 연구)

  • Kim, Hyeong-Gwan;Kim, So-Won;Lee, Hee-Chul
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.2
    • /
    • pp.178-185
    • /
    • 2016
  • In this study, we have fabricated light guide plates (LGPs) in thin film form for edge type back light unit (BLU) by using UV imprint lithography. In the LGPs, the pattern of functional resins on PC and PMMA substrates were successfully transferred from original master mold through PVC stamp. Optimized pattern arrays with slowly-sloped density were designed to obtain high brightness and uniformity. We could obtain a relatively improved brightness of $950cd/m^2$ and a uniformity of 87.3% by using the NP-S20 functional resins at an input power of 1.3 W because NP-S20 resin could show high formability after UV hardening process. The LGP prepared on polymethylmethacrylate (PMMA) substrate exhibited higher brightness than that on polycarbonate (PC) substrate because PMMA has lower refractive index resulting in more refraction toward the vertical direction.

Development of multipurpose seed paper from waste paper(II) - Focused on field test of manufactured seed paper - (폐지를 이용한 기능성 육묘지의 제조(제2보) - 육묘지 적성 시험 -)

  • Eom, Tae-Jin;Park, Soung-Bae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.1 s.119
    • /
    • pp.30-37
    • /
    • 2007
  • The seed paper was used in farm field recently for a sound young plant. The most of seed paper are made of synthetic non-woven sheet. Therefore, it is very difficult to bio-degrade in soil and is very hard to have some special function, for example keeping herbicide and/or insecticide activity because of its lack of chemical acceptability. The purpose of this research is manufacture of seedling paper which have a function of herbicide activity from waste paper. The fiber properties from waste paper were remarkably improved by fine removal with washing and/or flotation process. The paper-making ability for seed paper was enhanced with enzyme treatment of secondary fibers. The paper for seedling must have a good bio-degradation ability in soils. The absorption amount of chemical like as dithiopyr was increased remarkably in enzyme treated base paper. The embossing treatment of base paper was very effective for seed attachment and chemicals retention. And also, the developed seed paper showed a good penetration property of young root through embossed paper.

Manufacturing process of micro-nano structure for super hydrophobic surface (초발수 표면을 만들기 위한 마이크로-나노 몰드 제작 공정)

  • Lim, Dong-Wook;Park, Kyu-Bag;Park, Jung-Rae;Ko, Kang-Ho;Lee, Jeong-woo;Kim, Ji-Hun
    • Design & Manufacturing
    • /
    • v.15 no.4
    • /
    • pp.57-64
    • /
    • 2021
  • In recent materials industry, researches on the technology to manufacture super hydrophobic surface by effectively controlling the wettability of solid surface are expanding. Research on the fabrication of super hydrophobic surface has been studied not only for basic research but also for self-cleaning, anti-icing, anti-friction, flow resistance reduction in construction, textile, communication, military and aviation fields. A super hydrophobic surface is defined as a surface having a water droplet contact angle of 150 ° or more. The contact angle is determined by the surface energy and is influenced not only by the chemical properties of the surface but also by the rough structure. In this paper, maskless lithography using DMD, electro etching, anodizing and hot embossing are used to make the polymer resin PMMA surface super hydrophobic. In the fabrication of microstructure, DMDs are limited by the spacing of microstructure due to the structural limitations of the mirrors. In order to overcome this, maskless lithography using a transfer mechanism was used in this paper. In this paper, a super hydrophobic surface with micro and nano composite structure was fabricated. And the wettability characteristics of the micro pattern surface were analyzed.

미세금형 가공을 위한 전기화학식각공정의 유한요소 해석 및 실험 결과 비교

  • Ryu, Heon-Yeol;Im, Hyeon-Seung;Jo, Si-Hyeong;Hwang, Byeong-Jun;Lee, Seong-Ho;Park, Jin-Gu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.81.2-81.2
    • /
    • 2012
  • To fabricate a metal mold for injection molding, hot-embossing and imprinting process, mechanical machining, electro discharge machining (EDM), electrochemical machining (ECM), laser process and wet etching ($FeCl_3$ process) have been widely used. However it is hard to get precise structure with these processes. Electrochemical etching has been also employed to fabricate a micro structure in metal mold. A through mask electrochemical micro machining (TMEMM) is one of the electrochemical etching processes which can obtain finely precise structure. In this process, many parameters such as current density, process time, temperature of electrolyte and distance between electrodes should be controlled. Therefore, it is difficult to predict the result because it has low reliability and reproducibility. To improve it, we investigated this process numerically and experimentally. To search the relation between processing parameters and the results, we used finite element simulation and the commercial finite element method (FEM) software ANSYS was used to analyze the electric field. In this study, it was supposed that the anodic dissolution process is predicted depending on the current density which is one of major parameters with finite element method. In experiment, we used stainless steel (SS304) substrate with various sized square and circular array patterns as an anode and copper (Cu) plate as a cathode. A mixture of $H_2SO_4$, $H_3PO_4$ and DIW was used as an electrolyte. After electrochemical etching process, we compared the results of experiment and simulation. As a result, we got the current distribution in the electrolyte and line profile of current density of the patterns from simulation. And etching profile and surface morphologies were characterized by 3D-profiler(${\mu}$-surf, Nanofocus, Germany) and FE-SEM(S-4800, Hitachi, Japan) measurement. From comparison of these data, it was confirmed that current distribution and line profile of the patterns from simulation are similar to surface morphology and etching profile of the sample from the process, respectively. Then we concluded that current density is more concentrated at the edge of pattern and the depth of etched area is proportional to current density.

  • PDF

Hydrophobic Self-assembled Monolayer(SAM) Coating for Enhanced Demolding Performance in Micromolding (마이크로몰딩의 이형성 향상을 위한 소수성 Self-assembled Monolayer(SAM) 코팅)

  • Park, Sang-Ha;Han, Seung-O;Park, Jong-Yeon;Mun, Seong-Uk;Park, Jeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.4
    • /
    • pp.175-183
    • /
    • 2002
  • In this paper, the surface modification effect of self-assembled monolayer(SAM) of 1-dodecanethiol [$CH_3$($CH_2$)$_{11}$SH] used as an anti-adhesive film in micromolding process was studied. Monolayers of 1-dodecanethiol[$CH_3$(CH$_2$)$_{11}$SH] were obtained by immersing a metal place in pure 1-dodecanethiol. SAM film on the nickel plate has been examined by using X-ray photoelectron spectroscopy(XPS). The focus has been placed on S-Ni bonding. From the XPS analysis, sulfur atoms were detected from the SAM film as a chemical composition of S-Ni. In order to measure an adhesion force of the SAM-coated nickel surface, atomic force microscopy(AFM) was used in force-distance mode, which whows the micro-adhesive force on solid surface. It was shown that adhesion forces measured from the SAM-coated nickel surface and the Ni surface without SAM coating were 3.52nN and 5.32nN, respectively. In order to investigate the effect of SAM coating on the surface foughness the replica in demolding process, hot embossing experiments were performed using a SAM-coated nickel master and a nickel master without SAM coating. Surface roughness of replica from the SAM-coated master showed 25nm and that of replica from master without SAM coating was 35nm. The smoother surface roughness of the replica from the SAM-coated, master is believed to result from reduction in the adhesion forces.ces.

A Virtual Sculpting System using Haptic Interface (햅틱 인터페이스를 이용한 가상 조각 시스템)

  • Kim Laehyun;Park Sehyung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.12
    • /
    • pp.682-691
    • /
    • 2004
  • We present a novel haptic sculpting system where the user intuitively adds to and carves out material from a volumetric model using new sculpting tools in the similar way to handling real clay Haptic rendering and model deformation are implemented based on volumetric implicit surface. We enhance previous volume-based haptic sculpting systems by presenting fast and stable force computation on 3D models to be deformed. In order to bridge the gap between fast haptic process (1 KHz) and much slower visual update frequency(~30Hz), the system generates intermediate implicit surfaces between two consecutive physical models being deformed. It performs collision detection and force computation on the intermediate surface in haptic process. The volumetric model being sculpted is visualized as a geometric model which is adaptively polygonized according to the surface complexity. We also introduce various visual effects for the real-time sculpting system including mesh-based solid texturing, painting, and embossing/engraving techniques.