디지털 홀로그램(digital hologram, DH)은 2차원 데이터에 3차원의 정보를 포함하는 초고부가가치의 영상 콘텐츠이다. 따라서 이 콘텐츠의 유통을 위해서는 그 지적재산권이 반드시 보호되어야 한다. 본 논문에서는 이를 위해서 최초로 딥 뉴럴 네트워크를 이용한 DH의 워터마킹 방법을 제안한다. 이 방법은 워터마크(watermark, WM)가 의 비가시성, 공격에 대한 강인성, WM 추출 시 호스트 정보를 사용하지 않는 blind 워터마킹 방법이다. 제안하는 네트워크는 호스트와 워터마크 각각의 전처리, WM 삽입, WM 추출의 네 부-네트워크로 구성된다. 이 네트워크는 고주파 성분이 강한 DH의 특성을 감안하여 호스트 데이터를 축소하지 않고 WM 데이터를 확장하여 호스트 데이터와 정합함으로써 WM를 삽입한다. 또한 이 네트워크의 학습에 있어서 DH의 데이터 분포특성에 따른 성능의 차이를 확인하고, 모든 종류의 DH에서 최고의 성능을 갖는 학습 데이터 세트를 선정하는 방법을 제시한다. 제안한 방법을 다양한 종류와 강도의 공격에 대해 실험을 수행하여 그 성능을 보인다. 또한 이 방법이 호스트 DH의 해상도와 WM 데이터에 독립적으로 동작하여 높은 실용성을 갖는다는 것을 보인다.
본 연구에서는 쾌속조형시스템의 요구사항에 부합되는 Semi-fragile 워터마킹 알고리즘을 제안한다. 쾌속조형시스템은 높은 정밀도를 요구하기 때문에 원본에 시각적인 변화를 주거나 왜곡을 할 경우, 출력물인 시제품에 큰 영향을 미친다. 따라서 이동, 회전, 신축과 같은 기하학적 변환이나 메쉬의 순서를 변경하는 변환, 파일 포맷 변환은 모델의 기본 형태를 변화시키지 않기 때문에 많이 사용되지만, 모델의 기본 형태를 변환시키는 데시메이션, 평활화 등은 사용하지 않는다. 제안된 알고리즘은 쾌속조형시스템의 이러한 제약을 고려하여 기하학적인 변환이나 메쉬 순서정렬, 파일 포맷 변환에는 강인하지만 그 외 변환에는 취약한 Semi-fragile 워터마킹 알고리즘이다. 제안한 워터마킹 알고리즘은 워터마크 정보의 삽입 전후 모델의 형태가 변하지 않으며, 쾌속조형시스템과 같은 고정밀도를 요구하는 기계공학 분야에서 데이터의 무결성 인증목적으로 사용할 수 있으며, 정보은닉 용도로도 사용할 수 있다.
중앙은행은 통화정책을 운용하면서 통화정책 방향에 관한 보고서를 통해 시장과 소통하고 있다. 최근의 Covid-19 팬데믹은 세계적인 경제의 급격한 위축을 초래하였다. 2008년 글로벌 금융위기 시와 비교해 보더라도 불확실성이 적지 않은 상황이다. 그 파급효과가 전 세계적으로 확산되면서 경기침체의 장기화에 관한 우려도 증폭되고 있다. 본 논문에서는 미 연준과 한국은행의 통화정책을 담고 있는 통화정책방향 결정문과 의결문의 특징을 분석하고 세계적인 위기에 어떠한 영향을 받았는지 살펴보았다. 분석을 위해 1999년 10월부터 2020년 9월까지 공표된 양 국가의 통화정책방향 보고서 텍스트 자료를 수집하였으며 워드 클라우드 및 워드 임베딩 등을 이용하여 의미상 특징을 살펴보았다. 조각별 회귀나무 모형을 통해 양국 문서의 비유사성 추이도 분석해 보았다. 분석 결과 한국은행과 미 연준 모두 시장과의 투명하고 효과적인 소통을 위해 명확한 의미를 지닌 단어로 정제된 문서 자료를 작성하고 있는 것으로 나타났다. 또한, 급격한 글로벌 경제환경의 변화가 통화정책에 영향을 미치면서 문서 간 의미상 동조화가 이루진 것으로 나타났다.
모바일 환경에서 의사소통은 SMS 문자로 이루어진다. SMS 문자에서 사용되는 어휘들은 일반적인 한국어 문어체 문장에서 사용되는 어휘들과 다른 부류의 어휘들이 사용될 것으로 예상할 수 있다. 예를 들어, 일반적인 문어체의 경우 문장의 시작이나 끝맺음이 올바르고 문장의 구성요소가 잘 갖추어졌지만, SMS 문자 말뭉치의 경우 구성요소를 생략 및 간략한 표현으로 대체하는 경우가 많다. 이러한 어휘 사용 특성을 분석하기 위하여, 기존에 구축된 구어체 말뭉치와 문어체 말뭉치를 사용한다. 실험에서는 구어체 말뭉치인 SMS 문자 말뭉치와 네이버 영화평 말뭉치, 그리고 문어체 말뭉치인 한국어 문어체 원시 말뭉치의 어휘사용 특성을 비교-분석한다. 말뭉치별 어휘 비교 및 분석을 위하여 품사 태그 형용사(VA)를 기준으로 하였고, 공연강도를 측정하기 위해 변별적 공연어휘소 분석 방법론을 사용하였다. 그 결과 '좋-', '죄송하-', '즐겁-' 등 감정표현 형용사들이 SMS 문자 말뭉치에서 선호되는 반면, 네이버 영화평 말뭉치에서는 평가 표현과 관련된 형용사들이 선호되는 것을 확인할 수 있었다. 이러한 과정에서 추출된 공연강도가 높은 형용사를 기준으로 감정어휘 사전을 자동 구축하기 위하여 단어 임베딩 기법을 사용하였으며, 총 343,603개의 감성어휘를 자동 구축하였다.
Yim, Sunjin;Kim, Sungchul;Kim, Inhwan;Park, Jae-Woo;Cho, Jin-Hyoung;Hong, Mihee;Kang, Kyung-Hwa;Kim, Minji;Kim, Su-Jung;Kim, Yoon-Ji;Kim, Young Ho;Lim, Sung-Hoon;Sung, Sang Jin;Kim, Namkug;Baek, Seung-Hak
대한치과교정학회지
/
제52권1호
/
pp.3-19
/
2022
Objective: The purpose of this study was to investigate the accuracy of one-step automated orthodontic diagnosis of skeletodental discrepancies using a convolutional neural network (CNN) and lateral cephalogram images with different qualities from nationwide multi-hospitals. Methods: Among 2,174 lateral cephalograms, 1,993 cephalograms from two hospitals were used for training and internal test sets and 181 cephalograms from eight other hospitals were used for an external test set. They were divided into three classification groups according to anteroposterior skeletal discrepancies (Class I, II, and III), vertical skeletal discrepancies (normodivergent, hypodivergent, and hyperdivergent patterns), and vertical dental discrepancies (normal overbite, deep bite, and open bite) as a gold standard. Pre-trained DenseNet-169 was used as a CNN classifier model. Diagnostic performance was evaluated by receiver operating characteristic (ROC) analysis, t-stochastic neighbor embedding (t-SNE), and gradient-weighted class activation mapping (Grad-CAM). Results: In the ROC analysis, the mean area under the curve and the mean accuracy of all classifications were high with both internal and external test sets (all, > 0.89 and > 0.80). In the t-SNE analysis, our model succeeded in creating good separation between three classification groups. Grad-CAM figures showed differences in the location and size of the focus areas between three classification groups in each diagnosis. Conclusions: Since the accuracy of our model was validated with both internal and external test sets, it shows the possible usefulness of a one-step automated orthodontic diagnosis tool using a CNN model. However, it still needs technical improvement in terms of classifying vertical dental discrepancies.
본 연구에서는 PSC 구조물의 프리스트레스를 직접적으로 평가하기 위해 헤테로코어 광섬유를 활용하여 콘크리트의 변형량 계측을 기반으로 하는 새로운 센서모듈을 제안하고 성능실험을 수행하였다. 헤테로코어 광섬유는 전송로의 특정 부분이 구부러지면 광 손실이 발생하며, 곡률의 크기에 따라 광 손실량이 선형적으로 변한다. 센서모듈의 계측 성능과 광섬유의 적용성을 확인하기 위해 센서모듈에 변형을 발생시키며 광섬유를 통과하는 빛을 전력으로 변환하여 측정하였다. 센서모듈을 매립시킨 지름 15cm, 높이 35cm의 원주형 콘크리트 공시체에 최대 변형량 0.5mm을 0.12mm/min의 속도로 발생시키는 동안 광섬유를 통과한 빛은 변형과의 관계에서 0.9333의 선형성을 가지는 것을 확인할 수 있었다. 이번 실험의 결과를 통해 헤테로코어형 광섬유를 활용한 센서모듈을 구조물에 매립하여 콘크리트 압축변형량 계측을 통해 PSC 구조물의 프리스트레스를 직접적으로 평가하는 것이 가능할 것으로 판단되며, 앞으로 진행될 PSC 부분 거더 모델 실험에 적용할 쉬스관 일체형 센서모듈 개발에 유용한 자료로 활용될 수 있을 것으로 판단된다.
동물보호법 개정에 따라 반려견 등록이 의무화 되었음에도 불구하고, 현재 등록 방법의 불편함으로 등록율이 저조한 상태이다. 본 논문에서는 새로운 등록 방법으로 검토되고 있는 반려견 안면 인식 기술에 대한 성능 개선 연구를 진행하였다. 딥러닝 학습을 통해, 반려견의 안면 인식을 위한 임베딩 벡터를 생성하여 반려견 개체별로 식별하기 위한 방법을 실험하였다. 딥러닝 학습을 위한 반려견 이미지 데이터셋을 구축하고, InceptionNet과 ResNet-50을 백본 네트워크로 사용하여 실험하였다. 삼중항 손실 방법으로 학습하였으며, 안면 검증과 안면 식별로 나뉘어 실험하였다. ResNet-50 기반의 모델에서 최고 93.46%의 안면 검증 성능을 얻을 수 있었으며, 안면 식별 시험에서는 rank-5에서 91.44%의 최고 성능을 각각 얻을 수 있었다. 본 논문에서 제시한 실험 방법과 결과는 반려견의 등록 여부 확인, 반려견 출입시설에서의 개체 확인 등 다양한 분야로 활용이 가능하다.
화자 인증 시스템에서 입력 발성 길이의 변화는 성능을 하락시킬 수 있는 대표적인 요인이다. 이러한 문제점을 개선하기 위해, 몇몇 연구에서는 시스템 내부의 특징 가공 과정을 여러가지 서로 다른 경로에서 수행하거나 서로 다른 수용 영역(Receptive Field)을 가진 합성곱 계층을 활용하여 다양한 화자 특징을 추출하였다. 이러한 연구에 착안하여, 본 연구에서는 가변 길이 입력 발성을 처리하기 위해 보다 다양한 수용 영역에서 화자 정보를 추출하고 이를 선택적으로 통합하는 통합된 수용 영역 다양화 기법을 제안한다. 제안한 통합 기법은 입력된 특징을 여러가지 서로 다른 경로에서 다른 수용 영역을 가진 합성곱 계층으로 가공하며, 가공된 특징을 입력 발성의 길이에 따라 동적으로 통합하여 화자 특징을 추출한다. 본 연구의 심층신경망은 VoxCeleb2 데이터세트로 학습되었으며, 가변 길이 입력 발성에 대한 성능을 확인하기 위해 VoxCeleb1 평가 데이터 세트를 1 s, 2 s, 5 s 길이로 자른 발성과 전체 길이 발성에 대해 각각 평가를 수행하였다. 실험 결과, 통합된 수용 영역 다양화 기법이 베이스라인 대비 동일 오류율을 평균적으로 19.7 % 감소시켜, 제안한 기법이 가변 길이 입력 발성에 의한 성능 저하를 개선할 수 있음을 확인하였다.
이중 강-콘크리트 합성말뚝의 설계를 위한 지지력 평가 방법이 정립되지 않아 기존 강관말뚝 설계 지지력식이 활용되고 있다. 그러나 이들 설계식 간 지지력 예측 결과가 상이할 뿐만 아니라 일반적으로 가장 보수적인 결과를 채택하게 된다. 이러한 말뚝 지지력 평가방법은 설계의 신뢰성 및 경제성을 낮추게 된다. 본 논문은 수직하중을 받는 이중 강관 내 콘크리트 채움된 신형식 합성단면(DSCT) 말뚝의 역학적 거동을 수치해석적으로 조사하고, 여러 DSCT 말뚝 조건변화에 따른 연직지지력을 분석하였다. DSCT 말뚝 및 인접지반에 대한 축대칭 유한요소모델을 생성하였고, 이를 활용해 근입깊이, 말뚝 선단 채움재 강성, 말뚝 선단 채움재 높이, 기반암층 종류 변화에 따른 영향을 분석하였다. 또한 해석결과를 말뚝 설계 실무에서 주로 사용하는 선단 지지력 평가식과 비교하여 합성말뚝에 대한 기존 강관말뚝 지지력 산정식의 활용 가능성을 검토하였다.
온라인 리뷰는 소비자의 구매 의사결정 과정에서 중요한 역할을 담당하고 있으므로 소비자에게 유용하고 신뢰성이 있는 리뷰를 제공하는 것이 중요하다. 기존의 온라인 리뷰 유용성 예측 관련 연구는 주로 온라인 리뷰의 텍스트와 평점 정보 간의 일관성을 바탕으로 리뷰 유용성을 예측하였다. 그러나 기존 연구는 평점 정보를 스칼라로 표현했기 때문에 표현 수용력이 제한적이거나 평점 정보와 리뷰 텍스트 정보와의 상호작용을 제한적으로 학습하는 한계가 존재한다. 본 연구에서는 기존 연구의 한계점을 보완하기 위해 리뷰 텍스트와 평점 정보 간의 상호작용을 효과적으로 학습할 수 있는 CNN-RHP(CNN based Review Helpfulness Prediction) 모델을 제안하였다. 먼저, 리뷰 텍스트의 의미론적 특성을 추출하기 위해 multi-channel CNN을 적용하였다. 다음으로, 평점 정보는 텍스트 특성과 동일한 차원을 나타내는 독립된 고차원 임베딩 특성 벡터로 변환하였다. 최종적으로 요소별(Element-wise) 연산을 통해 리뷰 텍스트와 평점 정보 간의 일관성을 학습하였다. 본 연구에서는 제안된 CNN-RHP 모델의 성능을 평가하기 위해 Amazom.com에서 수집된 온라인 소비자 리뷰를 사용하였다. 실험 결과, 본 연구에서 제안한 CNN-RHP 모델이 기존 연구에서 제안된 여러 모델과 비교했을 때 우수한 예측 성능을 나타내는 것을 확인하였다. 본 연구의 결과는 온라인 전자상거래 플랫폼에서 소비자들에게 리뷰 유용성 예측 서비스를 제공할 때 유의미한 시사점을 제공할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.