• Title/Summary/Keyword: Embedded data

Search Result 2,138, Processing Time 0.024 seconds

Development of Embedded System for Home Automation using Android OS (안드로이드 OS를 이용한 가정 자동화용 임베디드 시스템 개발)

  • Lee, Cheul-Hee;Park, Hyoung-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4574-4577
    • /
    • 2011
  • In this paper, In this paper, analyzed structure of home networking used in USN(Ubiquitous Sensor Network) and embedded systems for home automation was implemented on the Android operating system. Developed a system for building a home network using wireless communication, so it is possible to minimize the difficulty of installation. Home automation system has built based on pre-defined ID according electronic components that make a house. In addition, a data structure suitable for home automation was defined and developing application programs based on Android OS according to packet structure, embedded system for home automation was developed.

Design and Implementation of IEEE 802.15.4 Packet Analyzer Based on Embedded Linux (임베디드 리눅스 기반의 IEEE 802.15.4 패킷 분석기 설계 및 구현)

  • Lee, Chang-Woo;Cho, Hyeon-Woo;Ban, Sung-Jun;Kim, Sang-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.12
    • /
    • pp.1173-1178
    • /
    • 2007
  • Ubiquitous sensor network (USN) is composed of many sensor nodes which are one of the simplest form of embedded system. In developing the sensor network system, a debugging tool is necessary to test and verify the system. Recently, a so-called packet analyzer has been developed for this purpose, and it supports IEEE 802.15.4 which is considered as the standard for the sensor network protocols. The major function of the packet analyzer is to take RF packets from sensor nodes and show the structure and the data of the packets graphically to the user. However, the conventional packet analyzers do not support remote control because they require a USB interface along with a personal computer. To make it available for remote control, we propose a new packet analyzer based on a server-client scheme in which a server program is implemented on embedded Linux and a client program is implemented on Windows for convenient use.

An Optimal Selection of Embedded Platform for Specific Applications (특정목적 수행을 위한 임베디드 시스템 플랫폼의 최적 선택)

  • Moon, Ho-Sun;Kim, Yong-Deak
    • 전자공학회논문지 IE
    • /
    • v.47 no.1
    • /
    • pp.48-55
    • /
    • 2010
  • The goal of this paper is to determine optimal hardware platform for specific applications. In order to develop an understanding of how select the optimal platform, we focus upon the real-time embedded vehicle system for processing forward image and sound. In this paper we propose to measure parameters such as instructions, execution cycle, required memory size for program and data by using ARMulator. We have measured three types of processor cores: ARM7, ARM9 and ARM10. The results of the study indicated that the proposed methods could measure the minimal requirements of hardware platform for specific applications. By defining lower limit of hardware specifications in embedded systems, we can minimize expenses with suitable system performance without implementing the system.

A Disaster Evacuation System Using Smart Devices for Indoor Crisis Management in BLE Environments (BLE 환경에서 실내 위기관리를 위한 스마트 장치 기반의 재난대피 시스템)

  • Jang, Minsoo;Jeong, Wooyong;Lim, Kyungshik
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.5
    • /
    • pp.281-296
    • /
    • 2015
  • This paper describes a novel disaster evacuation system using embedded systems such as smart devices for crisis and emergency management. In indoor environments deployed with the Bluetooth Low Energy(BLE) beacons, smart devices detect their indoor positions from beacon messages and interact with Map Server(MS) and Route Server(RS) in the Internet over the LTE and/or Wi-Fi functions. The MS and RS generate an optimal path to the nearest emergency exit based on a novel graph generation method for less route computation, called the Disaster Evacuation Graph(DEG), for each smart device. The DEG also enables efficient processing of some constraints in the computation of route, such as load balancing in situation of different capacities of paths or exits. All data interfaces among three system components, the MS, RS, smart devices, have been defined for modular implementation of our disaster evacuation system. Our experimental system has been deployed and tested in our building thoroughly and gives a good evidence that the modular design of the system and a novel approach to compute emergency route based on the DEG is competitive and viable.

Wireless Ordering System For Embedded (무선 임베디드 주문 시스템)

  • Kim, min-seong;Cho, sang-hee;Jeong, seong-cheol;Lee, sang-gyu;Hong, kyung-ho
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.569-572
    • /
    • 2008
  • I proposed wireless ordering system using Qt embedded. This system will make the good use of real life applications and make fit for practical use. I embodied data input, transfer, gathering and back-transfer on wireless network using TCP/IP protocol on QSocket provided by Qt. Server environment is Linux 9.0 and gcc-2.95.3 on PC, and three target-boards consist PXA255 processor with wireless-LAN card which communicate through wireless access pointer. Software tools on target-board are gcc, tmake, qt-X11, qt-embedded and etc. I designed touch-screen interface for user convenience.

  • PDF

A Simple Power Management Scheme with Enhanced Stability for a Solar PV/Wind/Fuel Cell Fed Standalone Hybrid Power Supply using Embedded and Neural Network Controller

  • Thangavel, S.;Saravanan, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1454-1470
    • /
    • 2014
  • This paper propose a new power conditioner topology with intelligent power management controller that integrates multiple renewable energy sources such as solar energy, wind energy and fuel cell energy with battery backup to make best use of their operating characteristics and obtain better reliability than that could be obtained by single renewable energy based power supply. The proposed embedded controller is programmed for maintaining a constant voltage at PCC, maximum power point tracking for solar PV panel and WTG and power flow control by regulating the reference currents of the controller on instantaneous basis based on the power delivered by the sources and load demand. Instantaneous variation in reference currents of the controller enhances the controller response as it accommodates the effect of continuously varying solar insolation and wind speed in the power management. The power conditioner uses a battery bank with embedded controller based online SOC estimation and battery charging system to suitably sink or source the input power based on the load demand. The simulation results of the proposed power management system for a standalone solar/WTG/fuel cell fed hybrid power supply with real time solar radiation and wind velocity data collected from solar centre, KEC for a sporadically varying load demand is presented in this paper and the results are encouraging in reliability and stability perspective.

Overhead Compensation Technique to Enhance the Accuracy of a Software Timer for Light-weight Embedded Device (경량 임베디드 디바이스 환경에서 소프트웨어 타이머의 정확성 향상을 위한 오버헤드 보정기법)

  • Kim, Hiecheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.4
    • /
    • pp.9-19
    • /
    • 2019
  • As light-weight embedded devices become widely used in the area of low-power networking and high-precision sensor data acquisition, support for time-critical applications becomes essential for the light-weight embedded devices. This paper addresses the accuracy issue of a software timer for small or tiny embedded devices equiped with light-weight MCUs(Micro controller units). We first explore the characteristics of overhead in a typical implementation of a software timer, and then measure the overhead through a realistic implementation. Using the measurement result, we propose an overhead compensation technique which reduces the overhead from the hardware timer-tick.

Communication Failure Resilient Improvement of Distributed Neural Network Partitioning and Inference Accuracy (통신 실패에 강인한 분산 뉴럴 네트워크 분할 및 추론 정확도 개선 기법)

  • Jeong, Jonghun;Yang, Hoeseok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.1
    • /
    • pp.9-15
    • /
    • 2021
  • Recently, it is increasingly necessary to run high-end neural network applications with huge computation overhead on top of resource-constrained embedded systems, such as wearable devices. While the huge computational overhead can be alleviated by distributed neural networks running on multiple separate devices, existing distributed neural network techniques suffer from a large traffic between the devices; thus are very vulnerable to communication failures. These drawbacks make the distributed neural network techniques inapplicable to wearable devices, which are connected with each other through unstable and low data rate communication medium like human body communication. Therefore, in this paper, we propose a distributed neural network partitioning technique that is resilient to communication failures. Furthermore, we show that the proposed technique also improves the inference accuracy even in case of no communication failure, thanks to the improved network partitioning. We verify through comparative experiments with a real-life neural network application that the proposed technique outperforms the existing state-of-the-art distributed neural network technique in terms of accuracy and resiliency to communication failures.

MEMS Embedded System Design (MEMS 임베디드 시스템 설계)

  • Hong, Seon Hack
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.4
    • /
    • pp.47-54
    • /
    • 2022
  • In this paper, MEMS embedded system design implemented the sensor events via analyzing the characteristics that dynamically happened to an abnormal status in power IoT environments in order to guarantee a maintainable operation. We used three kinds of tools in this paper, at first Bluetooth Low Energy (BLE) technology which is a suitable protocol that provides a low data rate, low power consumption, and low-cost sensor applications. Secondly LSM6DSOX, a system-in-module containing a 3-axis digital accelerometer and gyroscope with low-power features for optimal motion. Thirdly BM1422AGMV Digital Magnetometer IC, a 3-axis magnetic sensor with an I2C interface and a magnetic measurable range of ±120 uT, which incorporates magneto-impedance elements to detect the magnetic field when the current flowed in the power devices. The proposed MEMS system was developed based on an nRF5340 System on Chip (SoC), previously compared to the standalone embedded system without bluetooth technology via mobile App. And also, MEMS embedded system with BLE 5.0 technology broadcasted the MEMS system status to Android mobile server. The experiment results enhanced the performance of MEMS system design by combination of sensors, BLE technology and mobile application.

A Study on Multi-Vehicle Control of Electro Active Polymer Actuator based on Embedded System using Adaptive Fuzzy Controller (Adaptive Fuzzy 제어기를 이용한 Embedded 시스템 기반의 기능성 고분자 구동체 다중제어에 관한 연구)

  • 김태형;김훈모
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.94-103
    • /
    • 2003
  • In case of environment requiring safety such as human body and requiring flexible shape, a conventional mechanical actuator system does not satisfy requirements. Therefore, in order to solve these problems. a research of various smart material such as EAP (Electro Active Polymer), EAC (Electro Active Ceramic) and SMA (Shape Memory Alloy) is in progress. Recently, the highest preferring material among various smart material is EP (Electrostictive Polymer), because it has very fast response time, powerful force and large displacement. The previous researches have been studied properties of polymer and simple control, but present researches are studied a polymer actuator. An EP (Electostrictive Polymer) actuator has properties which change variably ils shape and environmental condition. Therefore, in order to coincide with a user's purpose, it is important not only to decide a shape of actuator and mechanical design but also to investigate a efficient controller. In this paper, we constructed the control logic with an adaptive fuzzy algorithm which depends on the physical properties of EP that has a dielectric constant depending on time. It caused for a sub-actuator to operate at the same time that a sub-actuator system operation increase with a functional improvement and control efficiency improvement in each actuator, hence it becomes very important to manage it effectively and to control the sub-system which Is operated effectively. There is a limitation on the management of Main-host system which has multiple sub-system, hence it brings out the Multi-Vehicle Control process that disperse the task efficiently. Controlling the multi-dispersion system efficiently, it needs the research of Main-host system's scheduling, data interchange between sub-actuators, data interchange between Main-host system and sub-actuator system, and data communication process. Therefore in this papers, we compared the fuzzy controller with the adaptive fuzzy controller. also, we applied the scheduling method for efficient multi-control in EP Actuator and the algorithm with interchanging data, protocol design.