• Title/Summary/Keyword: Embedded Steel Plate Connection

Search Result 17, Processing Time 0.023 seconds

A Study for Structural Capacity Evaluation of Embedded Steel Plate Connected with Prestressed Concrete Beam to Build Large Space Educational Facilities (대공간 교육시설 축조를 위한 프리스트레스트 보에 사용되는 접합 강재의 성능평가에 대한 연구)

  • Lee, Kyoung-Hun
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.10 no.2
    • /
    • pp.1-7
    • /
    • 2011
  • An experimental study to evaluate structural capacity of an embedded plate connected with prestressed concrete beam was performed. Embedded steel plates and prestressed concrete beam were connected with stud-bolts at the ends of concrete beam specimens. About 1,000 kN concentrated load was applied at 450mm away from the end of beam specimen. A 3,000 kN capacity static Oil-jack was used to direct concentrated load. The maximum strain of stud-bolt recorded $90{\times}10^{-6}$(mm/mm) and wide width cracks were not founded. Any falling failures of concrete and large deformations were not founded either between steel plate and prestressed concrete specimen. As a result, construction performance can be improved using this embedded steel plate connection system apply to large space educational facilities.

A Study of continuous PSC bridge with a reinforcement steel plate (보강강판을 이용한 연속 PSC 교량 공법에 관한 연구)

  • Koo Min-Se;Kim Hun-Hee;Jung Young-Do
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.422-429
    • /
    • 2005
  • It is limited to decrease height or section even by system conversion to indeterminate structure - continuous beam - in existing PSC girder bridges. In this study, the movement of connection is analyzed through actual field test, by increasing stiffness of negative moment area in continuous PSC bridge and developing continuous PSC bridge with embedded steel plate, that can overcome the demerit of existing connection. As a result, it is confirmed that the body unification of the connection is being realized and maintained. Moreover, the height of a span is suggested in continuous PSC girder bridge with embedded steel plate by computational analysis

  • PDF

Experimental Study on the Connection between RC Footing and Steel Pile according to Rail loads (철도하중을 고려한 기초구조물과 강관말뚝 연결부 거동에 관한 실험적 연구)

  • Kim, Jung-Sung;Kim, Dae-Sang;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1607-1614
    • /
    • 2011
  • As the connection between spread footing and pile is very important structural connection, it acts as the inter-loading medium to transfer the rail loads applied by superstructure to ground through the body pile of foundation. The experimental study is the method how to reinforce the pile cap between steel pile and footing utilizing perfobond plate with protruding keys. It were experimented on the compression punching tests and bending moment tests against the vertical loading and horizontal loadings acting on head of steel tube pipe. As a result, the tension capacity of the perfobond plate exhibited the superior performance due to the interlocking or dowel effects by the sheared keys of perfobond plate, and there were showing the sufficient strength and ductile capacity against the bending moment of horizontal loading tests. Therefore, it is judged that "the embedded method of perfobond plate in pile cap and footing" which is utilizing the shear connection of perfobond plate with protruding keys has a sufficient structural stability enough to be replaced with the current specification of reinforced method of pile cap with vertically deformed rebar against the vertical compression loads and bending moments that are able to occur in the combination structure of steel pile and the footing foundation.

  • PDF

Seismic Behavior by Beams-Wall Connections depending upon Joint Details of Embedded Steel-Plate Composite Coupling Beams (Steel-Plate 매입형 합성 연결보의 접합부 상세에 따른 내진거동)

  • Joo, Jae-Hyung;Chea, Seong-Yun;Kim, Seon-Gyu;Kim, Woo-Jae;Jun, Ho-Min;Park, Hyo-Seon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.130-133
    • /
    • 2006
  • Owing to Higher story tendency and ceiling hight restriction of recent times, even though the depth of Coupling Beam decreases the demand efficiency is coming to be high rather so it is the difficult to satisfy a demand efficiency with the actual existing RC/Steel condition. It has been researched a lot of methods as an alternative plan about these but designer cannot apply them for the reason ; the structure standard and theory background are not taking a triangular position. As accomplishing the test research about the beams-wall connections department of steel-plate composite coupling beams from the research in the study it examines closely the beams-wall connections conduct quality and tries to provide the fundamental data for reasonable and optimum connection department designs. It knows that connection fixation degree and composite conduct degree of member part together become the important variable showing an energy dissipation ability in Test result.

  • PDF

Experimental study on the hybrid shear connection using headed studs and steel plates

  • Baek, Jang-Woon;Yang, Hyeon-Keun;Park, Hong-Gun;Eom, Tae-Sung;Hwang, Hyeon-Jong
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.649-662
    • /
    • 2020
  • Although several types of rigid shear connectors have been developed particularly to increase load-carrying capacity, application is limited due to the complicated details of such connection. In this study, push-out tests were performed for specimens with hybrid shear connectors using headed studs and shear plates to identify the effects of each parameter on the structural performance of such shear connection. The test parameters included steel ratios of headed stud to shear plate, connection length, and embedded depth of shear plates. The peak strength and residual strength were estimated using various shear transfer mechanisms such as stud shear, concrete bearing, and shear friction. The hybrid shear connectors using shear plates and headed studs showed large load-carrying capacity and deformation capacity. The peak strength was predicted by the concrete bearing strength of the shear plates. The residual strength was sufficiently predicted by the stud shear strength of headed studs or by shear friction strength of dowel reinforcing bars. Further, the finite element analysis was performed to verify the shear transfer mechanism of the connection with hybrid shear connector.

Test Result on Embedded Steel Column-to-Foundation Connection for Modular Unit Structural System (유닛 모듈러 기둥 매입형 기초 접합부에 대한 실험 연구)

  • Lee, Sang Sup;Bae, Kyu Woong;Park, Keum Sung;Hong, Sung Yub
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.537-547
    • /
    • 2014
  • A steel modular unit structural system has been used increasingly for mid and high-rise buildings, since the building can be easily constructed by assembling the pre-made modular unit structures. For this structural system, each modular unit structures have to be properly connected to the foundation to transfer the axial force and the bending moment that are generated from external load to the ground. In this study, a new type of the embedded steel column-to-foundation connection was proposed, and its flexural behavior was evaluated through a series of experimental study. Five full scale specimens for the proposed connections were constructed and tested. The effect of the main parameters that affect the flexural behavior of the proposed connection, such as embedment length and shape of end plate, were studied. From the results, it was found that the flexural stiffness of the proposed connection was higher than that of the semi-rigid connection for all test specimens, and 200 mm of embedment length was proper for the given test specimens in this study.

Several Issues Closely Related to Construction in the Structural Design of Wuhan Center

  • Jian, Zhou
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.3
    • /
    • pp.189-196
    • /
    • 2022
  • The practical difficulties of construction will impose many restrictions on the structural design, and the construction method can also provide unexpected ideas for solving design problems. Through the discussion of three issues closely related to construction in the structural design of Wuhan Center, this paper illustrates the importance of in-depth consideration of the construction situations in the structural design stage. The topics of "Connection between Embedded Steel Plates in Steel Plate Composite Shear Wall" and "Connection Joint between Outrigger Truss and Core Wall" are about how to facilitate on-site construction by simplifying and optimizing detail design. The topic of "Adjusting Internal Force Distribution by Optimizing Construction Sequence" is about how to make the construction process a tool for structural design.

Analysis and design of demountable embedded steel column base connections

  • Li, Dongxu;Uy, Brian;Patel, Vipul;Aslani, Farhad
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.303-315
    • /
    • 2017
  • This paper describes the finite element model for predicting the fundamental performance of embedded steel column base connections under monotonic and cyclic loading. Geometric and material nonlinearities were included in the proposed finite element model. Bauschinger and pinching effects were considered in the simulation of embedded column base connections under cyclic loading. The degradation of steel yield strength and accumulation of plastic damage can be well simulated. The accuracy of the finite element model is examined by comparing the predicted results with independent experimental dataset. It is demonstrated that the finite element model accurately predicts the behaviour and failure models of the embedded steel column base connections. The finite element model is extended to carry out evaluations and parametric studies. The investigated parameters include column embedded length, concrete strength, axial load and base plate thickness. Moreover, analytical models for predicting the initial stiffness and bending moment strength of the embedded column base connection were developed. The comparison between results from analytical models and those from experiments and finite element analysis proved the developed analytical model was accurate and conservative for design purposes.

Experimental studies of headed stud shear connectors in UHPC Steel composite slabs

  • Gao, Xiao-Long;Wang, Jun-Yan;Yan, Jia-Bao
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.657-670
    • /
    • 2020
  • Due to the high compressive and tensile strength of ultra-high performance concrete (UHPC), UHPC used in steel concrete composite structures provided thinner concrete layer compared to ordinary concrete. This leaded to the headed stud shear connectors embedded in UHPC had a low aspect ratio. In order to systematic investigate the effect of headed stud with low aspect ratio on the structural behaviors of steel UHPC composite structure s this paper firstly carried out a test program consisted of twelve push out specimens. The effects of stud height, aspect ratio and reinforcement bars in UHPC on the structural behaviors of headed studs were investigated. The push out test results shows that the increasing of stud height did not obviously influence the structural behaviors of headed studs and the aspect ratio of 2.16 was proved enough to take full advantage of the headed stud strength. Based on the test results, the equation considering the contribution of weld collar was modified to predict the shear strength of headed stud embedded in UHPC. The modified equation could accurately predict the shear strength of headed stud by comparing with the experimental results. On the basis of push out test results, bending tests consisted of three steel UHPC composite slabs were conducted to investigate the effect of shear connection degree on the structural behaviors of composite slabs. The bending test results revealed that the shear connection degree had a significantly influence on the failure modes and ultimate resistance of composite slabs and composite slab with connection degree of 96% in s hear span exhibited a ductile failure accompanied by the tensile yield of steel plate and crushing of UHPC. Finally, analytical model based on the failure mode of composite slabs was proposed to predict the ultimate resistance of steel UHPC composite slabs with different shear connection degrees at the interface.

Static behavior of novel RCS through-column-type joint: Experimental and numerical study

  • Nguyen, Xuan Huy;Le, Dang Dung;Nguyen, Quang-Huy
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.111-126
    • /
    • 2019
  • This paper deals with experimental investigation and modeling of the static behavior of a novel RCS beam-column exterior joint. The studied joint detail is a through-column type in which an H steel profile totally embedded inside RC column is directly welded to the steel beam. The H steel profile was covered by two supplementary plates in the joint area in order to avoid the stirrups resisting shear in the joint area. Two full-scale through-column-type RCS joints were tested under static loading. The objectives of the tests were to examine the connection performance and to highlight the contribution of two supplementary plates on the shear resistance of the joint. A reliable nonlinear 3D finite element model was developed using ABAQUS software to predict the response and behavior of the studied RCS joint. An extensive parametric study was performed to investigate the influences of the stirrups, the encased profile length and supplementary plate length on the behavior of the studied RCS joint.