• Title/Summary/Keyword: Embedded Concrete

Search Result 669, Processing Time 0.029 seconds

Mechanical Properties on the Pull-Out Response of Steel Fibers Embedded in Cementitious Matrices (시멘트 매트릭스 내 강섬유의 매입 일반에 관한 성능)

  • Jeon Esther;Kim Sun Woo;Park Wan Shin;Han Byung Chan;Hwang Sun Kyung;Yun Hyun Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.762-765
    • /
    • 2004
  • The main objective of this study is to provide a parametric evaluation of the pull-out response of steel fibers embedded in cementitious matrices. The various parameters controlling the behavior of the bond stress versus end slip relationship are analyzed; their effects on the entire pull-out load versus end slip response and the corresponding pull-out energy up to total pull-out are investigated. Also discussed are the effects of the fiber length, the water/binder ratio of the mixtures and embedded length.

  • PDF

Basic study of algorithm for steel quantity analysis of composite precast concrete members (합성 PC 부재의 철골 물량산출 알고리즘 기초연구)

  • Kim, Gyeongju;Lim, Chaeyeon;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.96-97
    • /
    • 2014
  • Green Frame is a column-beam structure built by steel frame joints embedded in the columns and beams. Here, the steel frame embedded in the columns and beams is not a standardized product, instead it needs to be order-produced. The quantity for each steel frame size should be calculated to estimate the quantity of steel frames to be manufactured. However, it is highly time-consuming and requires a lot of effort in calculating the quantity of steel frames, for there are a wide range of steel frame types that are embedded in the columns and beams. To solve this problem, the study proposes an algorithm for calculation of the amount of steel frames with ease and promptness. When a program is developed using the algorithm proposed in the study in connection to the information on precast concrete members prepared in the design phase, it is anticipated that the manpower required as well as the manufacturing time will be decreased.

  • PDF

Imaging of Steel Bars Embedded inside Mortar Specimens for Nondestructive Testing

  • Rhim, Hong-Chul;Park, Kyung-Hyun
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.139-144
    • /
    • 2000
  • Ground Penetrating Radar (GPR) with 1 GHz antenna has been used to locate a steel bar embedded inside laboratory-prepared mortar specimens. Four mortar specimens are made with the dimensions of 100 cm (length) x 100 cm (width) x 14 cm (depth). One specimen had no bars and the other three specimens had a Dl9 steel bar at 4, 6. and 8 cm depth. As a part of the experimental work, the dielectric constants of mortar specimens are measured during curing. As the curing time increased. the dielectric constant decreased with decreasing moisture content inside the specimen. The steel bar embedded inside mortar specimens has been successfully identified in all three cases. The results using signal processing scheme developed in this study significantly improved the output of a commercially available radar system.

  • PDF

Bolted connectors with mechanical coupler embedded in concrete: Shear resistance under static load

  • Milicevic, Ivan;Milosavljevic, Branko;Pavlovic, Marko;Spremic, Milan
    • Steel and Composite Structures
    • /
    • v.36 no.3
    • /
    • pp.321-337
    • /
    • 2020
  • Contemporary design and construction of steel-concrete composite structures employs the use of prefabricated concrete elements and demountable shear connectors in order to reduce the construction time and costs and enable dismantling of elements for their potential reuse at the end of life of buildings. Bolted shear connector with mechanical coupler is presented in this paper. The connector is assembled from mechanical coupler and rebar anchor, embedded in concrete, and steel bolt, used for connecting steel to concrete members. The behaviour and ultimate resistance of bolted connector with mechanical coupler in wide and narrow members were analysed based on push-out tests and FE analyses conducted in Abaqus software, with focus on concrete edge breakout and bolt shear failure modes. The effect of concrete strength, concrete edge distance and diameter and strength of bolts on failure modes and shear resistance was analysed. It was demonstrated that premature failure by breakout of concrete edge occurs when connectors are located 100 mm or closer from the edge in low-strength and normal-strength reinforced concrete. Furthermore, the paper presents a relatively simple model for hand calculation of concrete edge breakout resistance when bolted connectors with mechanical coupler are used. The model is based on the modification of prediction model used for cast-in and post-installed anchors loaded parallel to the edge, by implementing equivalent influence length of connector with variable diameter. Good agreement with test and FE results was obtained, thus confirming the validity of the proposed method.

Embedded smart GFRP reinforcements for monitoring reinforced concrete flexural components

  • Georgiades, Anastasis V.;Saha, Gobinda C.;Kalamkarov, Alexander L.;Rokkam, Srujan K.;Newhook, John P.;Challagulla, Krishna S.
    • Smart Structures and Systems
    • /
    • v.1 no.4
    • /
    • pp.369-384
    • /
    • 2005
  • The main objectives of this paper are to demonstrate the feasibility of using newly developed smart GFRP reinforcements to effectively monitor reinforced concrete beams subjected to flexural and creep loads, and to develop non-linear numerical models to predict the behavior of these beams. The smart glass fiber-reinforced polymer (GFRP) rebars are fabricated using a modified pultrusion process, which allows the simultaneous embeddement of Fabry-Perot fiber-optic sensors within them. Two beams are subjected to static and repeated loads (until failure), and a third one is under long-term investigation for assessment of its creep behavior. The accuracy and reliability of the strain readings from the embedded sensors are verified by comparison with corresponding readings from surface attached electrical strain gages. Nonlinear finite element modeling of the smart concrete beams is subsequently performed. These models are shown to be effective in predicting various parameters of interest such as crack patterns, failure loads, strains and stresses. The strain values computed by these numerical models agree well with corresponding readings from the embedded fiber-optic sensors.

Dispersion Effect of Hydration Heat in Mass Concrete Using Embedded Heat Pipe (매입형 히트파이프를 이용한 매스콘크리트 수화열 분산 효과)

  • Kim, Myung-Sik;Youm, Chi-Sun;Baek, Dong-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.85-90
    • /
    • 2009
  • Although most of existing hydration heat control methods show a certain degree of hydration heat control, generally, there are many problems as mentioned above. Therefore, our laboratory previously developed a hydration heat control method using an exposed heat pipe, which solves most of these problems and simultaneously displays excellent hydration heat control. Unfortunately, even this method had some problems such as the processing, transport, and assembly of heat pipes, and the surface treatment of a cut plane after pouring, and hardening concrete. Therefore, in this study, a hydration heat control method using an embedded pipe has been developed with the expectation that this method solves those problems in hydration heat control using an exposed heat pipe. As a result of the experiment, the peak temperature of ECHP and ICHP specimen about $4.5{\sim}6.5^{\circ}C$ than the OPC specimen and the probability of thermal cracked generated in ECHP and ICHP specimen decreased up to $13{\sim}20%$. Finally, it was confirmed in this study that the hydration heat control method using an embedded heat pipe is significantly more superior and cost effective than the existing method of an exposed one.

A Relationship between Drying Shrinkage and Water Potential (콘크리트의 건조수축과 수리에너지의 상관관계)

  • 한만엽
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.58-61
    • /
    • 1992
  • Water potential which controls miosture movement in concrete is a kind of stress which causes concrete shrinks or expands. Therefore, there is a straightforward relationship between the water potential and the shrinkage strain. Explicit equations which show the relationships between the two parameters were derived through rational process. Two micro mechanisms among three shrinkage mechanisms were considered in the theory. Thermocouple psychrometer were embedded in a concrete slab to measure the water potential and also to find a correlation with the shrinkage. The test results prove the validity of the theory, and show the way to utilize the delived equations.

  • PDF

On-Line Monitoring of Microscopic Fracture Behavior of Concrete Using Acoustic Emission (음향방출을 이용한 콘크리트 부재의 미시적 파괴특성의 On-Line Monitoring)

  • 이준현;이진경;장일영;윤동진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.677-682
    • /
    • 1998
  • Concrete is an inhomogeneous material consisting of larger aggregates and sand embedded in a cement paste matrix. In this study, an acoustic emission technique has been used to clarify the microscope failure mechanisms of concrete under three point bending test. AE source location has also been done to monitor the activities of internal damage and the progress of microscopic failure path during the loading. The relationship between AE characteristic and microscopic and microscopic failure mechanism is discussed.

  • PDF

Bond & Lapped Splices in High-Strength Concrete Structures (고강도 콘크리트 구조물의 철근 부착 및 이음에 대한 연구)

  • 김준성
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.6
    • /
    • pp.122-130
    • /
    • 1997
  • An experimental study was conducted to evaluate the bond performance of reinforcing bars embedded in high-strength concrete. Four bond specimens and ten beam splice specimens using concrete with compressive strength of 246kgf/$cm^2$ and 64lkgf/$cm^2$ were tested. The effect of several variables on basic development length and compressive strength of concrete is discussed in splice specimens. The test results showed that the current trend in concrete specification of making the splice length longer to compensate for having smaller cover and spacing may not be an effective approach.

  • PDF

Analysis of Crack Localization in Fracture of Concrete Structures (콘크리트 구조물의 파괴에서의 국소화된 균열진행해석)

  • Koo, Ja-Choon;Song, Ha-Won;Shim, Byul;Woo, Seung-Min;Byun, Keun-Joo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.583-586
    • /
    • 2000
  • In this paper, the embedded crack approach that crack is modeled by discontinuous line inside finite element is applied for localized progressive fracture analyses. The algorithm for progressive fracture analyses of concrete structure are enhanced by introducing nonlinear softening curve and unloading algorithm of tension-softening curve which can simulate localized fracture of concrete. The failure analysis results ar compared with existing test results for varification.

  • PDF