• Title/Summary/Keyword: Embankment and Foundation

Search Result 95, Processing Time 0.02 seconds

Mapping of the lost riprap in shallow marine sediments using SBP (SBP를 이용한 해저 천부에 유실된 사석의 조사)

  • Shin, Sung-Ryul;Kim, Chan-Su;Yeo, Eun-Min;Kim, Young-Jun;Ha, Hee-Sang
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.220-221
    • /
    • 2005
  • Sub-bottom profiler(SBP) has been used extensively for the mapping of basement in the foundation design of offshore structure, for pre- and post-dredging operations within harbors and channels, for selection of pipeline routes, sitting of drilling platforms, and in the exploration for an aggregates such as sands and gravels. During the construction of Siwha embankment for irrigation water and the expansion of arable land, the breaking of an embankment unfortunately occurred so that a lot of riprap was swept away and widely dispersed by the tide and strong current. The feasibility study for the construction of the tidal-powered electric plant in Siwha embankment was performed quite recently. Therefore we made use of SBP survey to investigate the distribution of the lost riprap. We could successfully map out the distribution of the lost riprap from the reflection amplitude characteristics of the sediments in SBP data set. We demonstrated the variation of reflection amplitude versus the sediments with and/or without riprap by means of the numerical modeling of acoustic wave equation using finite difference method. Also we examined an amplitude anomaly of the ripraped area through the physical modeling using ultrasonic.

  • PDF

Design of geocell reinforcement for supporting embankments on soft ground

  • Latha, G. Madhavi
    • Geomechanics and Engineering
    • /
    • v.3 no.2
    • /
    • pp.117-130
    • /
    • 2011
  • The methods of design available for geocell-supported embankments are very few. Two of the earlier methods are considered in this paper and a third method is proposed and compared with them. In the first method called slip line method, plastic bearing failure of the soil was assumed and the additional resistance due to geocell layer is calculated using a non-symmetric slip line field in the soft foundation soil. In the second method based on slope stability analysis, general-purpose slope stability program was used to design the geocell mattress of required strength for embankment. In the third method proposed in this paper, geocell reinforcement is designed based on the plane strain finite element analysis of embankments. The geocell layer is modelled as an equivalent composite layer with modified strength and stiffness values. The strength and dimensions of geocell layer is estimated for the required bearing capacity or permissible deformations. These three design methods are compared through a design example. It is observed that the design method based on finite element simulations is most comprehensive because it addresses the issue of permissible deformations and also gives complete stress, deformation and strain behaviour of the embankment under given loading conditions.

Unsteady Flow Analysis for the Design of Local Scour Protection by HEC-RAS(UNET) Model in the River Reach Affected by Tide (HEC-RAS 모형에 의한 감조하천구간 부정류 해석 및 세굴보호공 설계)

  • Namgung, Don;Cho, Doo-Chan;Yoon, Kwang-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1138-1142
    • /
    • 2005
  • The tidal river is a river affected by tide, which causes the water level to rise and fall two times everyday periodically. The local velocity across the river could be very fast because of the cross-sectional characteristics of the river even though it's not a rainy season. Therefore extreme local scour could take place around hydraulic structures such as piers and caissons due to backward flow velocity. For the construction of pier foundation of Ilsan-bridge In the Han River, the field observations were performed to get the velocity and water level. The numerical analysis was performed by HEC-RAS(UNET). The relationship between measured maximum velocity and calculated mean velocity is achieved, which is used to estimate the velocity and water level as the construction is proceeding. Countermeasures for scour were designed with the results of the hydraulic analysis to avoid potential damage during construction work. According to the results of monitoring, the velocity increase after temporary road embankment was negligible, from which it is considered that the degradation of main channel compensated for the constriction of cross-section by embankment.

  • PDF

An Analysis on the Deformation of Clayey Foundation Using Elasto-Viscoplastic Model (${\cdot}$粘塑性構成式을 使用한 粘性土地盤의 變形解析)

  • Lee, Moon-Soo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.2
    • /
    • pp.60-72
    • /
    • 1992
  • This study aims at predicting the behavior of saturated soft clayey foundation subjected to earth structure loads such as tidal dike, embankment etc. by using Biot's consolidation equation coupled with elasto-viscoplastic constitutive model. To validate the computer program developed b author, a case study was performed for the site of Kwang-yang steel works improved by sand drain, where since the beginning of the works, field measurements(settlement, lateral displacement and excess pore water pressure) had been accurately achieved. Comparisons between numerical results and observation values were carried out. The main results obtained are summarized as follows : 1. Settlement and lateral displacement between numerical and observation values show satisfactory accordance. 2. As for the exess pre water pressure, numerical results appear to be larger than observation values, which may be due to the existence of sand seams which were not found during soil investigation. 3. Useful data available for failure prediction of soft foundation can be secured by examining lateral displacement, settlement, exess pore water pressure and stress paths.

  • PDF

Application of Numerical Analysis for Sand Drain by the Multi-purpose Program of Soft Foundation Analysis (연약식반교양공법에 이용될 범용프로그램의 Sand Drain 공법에의 적용)

  • 박병기;정진섭
    • Geotechnical Engineering
    • /
    • v.1 no.2
    • /
    • pp.17-26
    • /
    • 1985
  • This study was carried out for the purpose of comparing in reference to sand drain in the next three different cases. First, The case of drain material (sand pile) has some rigidity during embankment and consolidation. Second, In usual case of no rigidity as a paper drain without permeability during embankment and consolidation Third, Check up clay behavior when above the two cases carried out respectively. This FEM analysis is consisted with Biot's consolidation equation when it is used for Christian Boehmer's numerical technique. The main results are obtained from above the Analysis When sand drain has some rigidity, the lateral and vertical deformation of clay foundation is restrained considerable amount and .exhibited bearing capacity of load as a pile According to the foundation in drained condition and untrained condition, the results are much variable in this analysis method. Also, The behaviors of stress path and pore water pressure met our expectation during , consolidation. This analysis should be considered to put into use of sand drain and design in future.

  • PDF

A Case Study of Reinforcing Ground behind Abutment using Twin-Jet Method (트윈제트공법을 이용한 교대 배면 기초보강 사례)

  • Kim, Yong-Hyun;Jang, Yeon-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.638-645
    • /
    • 2010
  • This study introduces a reinforcement work case using Twin-Jet Method. The area is located behind the abutment of the bridges built on soft clay along the $\bigcirc\bigcirc$ Express Highway. Its foundation was constructed by installing EPS blocks on the original ground to reduce the embankment load under the highway. However, the ground deformation has continuously occurred due to the settlement of the foundation soft cohesive soils. The amounts of subsidences at the surface turned out to be 20~30.0mm, After the pavement patch work on April 23, 2009, a drastic subsidence occurred together with 10mm swell, For this reason, Twin-Jet grout column construction was applied by passing through the EPS banking blocks without closing traffic flows on the express highway. The outcomes of core sample tests after reinforcing the ground turned out to be TCR 92.5%, RQD 64.6% and unconfined compressive strength 2.3~8.6Mpa. The test results showed that the condition of the ground foundation had improved using Twin-Jet grouting in most layers of ground including the cobble and gravel layer.

  • PDF

Optimal design of stone columns reinforced soft clay foundation considering design robustness

  • Yu, Yang;Wang, Zhu;Sun, HongYue
    • Geomechanics and Engineering
    • /
    • v.22 no.4
    • /
    • pp.305-318
    • /
    • 2020
  • Stone columns are widely used to treat soft clay ground. Optimizing the design of stone columns based on cost-effectiveness is always an attractive subject in the practice of ground treatment. In this paper, the design of stone columns is optimized using the concept of robust geotechnical design. Standard deviation of failure probability, which is a system response of concern of the stone column-reinforced foundation, is used as a measure of the design robustness due to the uncertainty in the coefficient of variation (COV) of the noise factors in practice. The failure probability of a stone column-reinforced foundation can be readily determined using Monte Carlo simulation (MCS) based on the settlements of the stone column-reinforced foundation, which are evaluated by a deterministic method. A framework based on the concept of robust geotechnical design is proposed for determining the most preferred design of stone columns considering multiple objectives including safety, cost and design robustness. This framework is illustrated with an example, a stone column-reinforced foundation under embankment loading. Based on the outcome of this study, the most preferred design of stone columns is obtained.

Evaluation on the Effect of Relief Wells by 3D Numerical Analysis on the Embankment of an Agricultural Reservoir (농업용 저수지 제방에서 3차원 수치해석에 의한 감압정의 효과 분석)

  • Ryu, Jeon-Yong;Heo, Joon;Chang, Yong-Chai
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.119-129
    • /
    • 2020
  • Through 3D seepage analysis of pressure relief well installed on the embankment of agricultural reservoir, the effects of reducing pore water pressure and hydraulic gradient, and increasing piping safety, depending on diameter (0.2, 0.4, 0.6 m) and space (10, 25, 50 m) of relief well, were analyzed. The conclusions drawn through this study are as follows. i) At the location of pressure relief well, pore water pressure decreases by 25.3~62.5%, and hydraulic gradient decreases by 22.4~55.7%. ii) Between relief wells, pore water pressure decreases by 2.7~40.3%, and hydraulic gradient decreases by 2.8~47.0%, which are relatively less than at the cross section of installed location of relief well. iii) Piping safety factor by critical hydraulic gradient increases by 28.9~125.6% at the location of relief well and increases by 2.9~88.8% between relief wells. iv) Seepage analysis needs to be performed by the 3D method to make evaluation of seepage at the location of relief well and between relief wells possible. v) Additional evaluation is required for various conditions such as waterhead, engineering characteristics of embankment body and its foundation, location, diameter, spacing and depth of pressure relief well.

Time effect of pile-soil-geogrid-cushion interaction of rigid pile composite foundations under high-speed railway embankments

  • Wang, Changdan;Zhou, Shunhua;Wang, Binglong;Guo, Peijun
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.589-597
    • /
    • 2018
  • Centrifuge model tests were used to simulate pile-raft composite foundation and pile-geogrid composite foundation with different pile spacing for researching the time effect of negative skin friction of rigid piles in high-speed railways. The research results show that the negative skin friction has a significant impact on the bearing capacity of composite foundation. Pile-raft composite foundation has higher bearing capacity compared to pile-geogrid composite foundation to reduce the effect of negative skin friction on piles. Both the foundation settlement and negative skin friction have significant time effect. The distribution of skin friction can be simplified as a triangle along the pile. The neutral point position moves deeper in the postconstruction stage at larger pile spacing. For pile-geogrid composite foundation, the setting of pile-cap affects the position of neutral point in the post-construction stage. Reinforced cushion with geotextile may promote the better performance of cushion for transmitting the loads to piles and surrounding soils. Arching effect in the cushion of the composite foundation is a progressive process. The compression of the rigid piles contributes less than 20% to 25% of the total settlement while the penetration of the piles and the compression of the bearing stratum below the pile tips contribute more than 70% of the total settlement. Some effective measures to reduce the settlement of soils need to be taken into consideration to improve the bearing capacity of pile foundation.

Performance of under foundation shock mat in reduction of railway-induced vibrations

  • Sadeghi, Javad;Haghighi, Ehsan;Esmaeili, Morteza
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.425-437
    • /
    • 2021
  • Under foundation shock mats have been used in the current practice in order to reduce/damp vibrations received by buildings through the surrounding environment. Although some investigations have been made on under foundation shock mats performance, their effectiveness in the reduction of railway induced-vibrations has not been fully studied, particularly with the consideration of underneath soil media. In this regard, this research is aimed at investigating performance of shock mat used beneath building foundation for reduction of railway induced-vibrations, taking into account soil-structure interaction. For this purpose, a 2D finite/infinite element model of a building and its surrounding soil media was developed. It includes an elastic soil media, a railway embankment, a shock mat, and the building. The model results were validated using an analytical solution reported in the literature. The performance of shock mats was examined by an extensive parametric analysis on the soil type, bedding modulus of shock mat and dominant excitation frequency. The results obtained indicated that although the shock mat can substantially reduce the building vibrations, its performance is significantly influenced by its underneath soil media. The softer the soil, the lower the shock mat efficiency. Also, as the train excitation frequency increases, a better performance of shock-mats is observed. A simplified model/method was developed for prediction of shock mat effectiveness in reduction of railway-induced vibrations, making use of the results obtained.