• Title/Summary/Keyword: Elutriation Rate

Search Result 12, Processing Time 0.018 seconds

A Proposal of Sequencing the Combined Processes for Resources Recovery and Nitrogen Removal from Piggery Waste (슬러리형 돈사폐수에서 자원회수와 질소제거를 위한 순차적 결합공정 제안)

  • Hwang, In-Su;Min, Kyung-Sok;Bae, Jin-Yeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.1
    • /
    • pp.61-66
    • /
    • 2006
  • The combined ADEPT(Anaerobic Digestion Elutriated Phased Treatment)-SHARON(Single reactor system for High Ammonium Removal Over nitrite)-ANAMMOX(Anaerobic ammonium oxidation) processes were operated for resources recovery and nitrogen removal from slurry-type piggery waste. The ADEPT process operated at an acidogenic loading rates of 3.95 gSCOD/L-day, the SCOD elutriation rate and acid production rate were 5.3 gSCOD/L-day and 3.3 gVFAs(as COD)/L-day, respectively. VS reduction and SCOD reduction by the hydrolysis were 13% and 0.19 $gSCOD_{prod.}/gVS_{feeding}$, respcetively. Also, the acid production rate was 0.80 $gVFAs/gSCOD_{prod}$. In methanogenic reactor, the gas production rate and methane content were 2.8 L/day($0.3m^3CH_4/kgCOD_{removal}@STP$) and 77%, respectively. With these operating condition, the removals of nitrogen and phosphorus were 94.1% as $NH_4-N$(86.5% as TKN) and 87.3% as T-P respectively.

Numerical Prediction for Fluidized Bed Chlorination Reaction of Ilmenite Ore (일메나이트광의 유동층 염화반응에 대한 수치적 예측)

  • Chung, Dong-Kyu;Jung, Eun-Jin;Lee, Mi Sun;Kim, Jinyoung;Song, Duk-Yong
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.107-113
    • /
    • 2019
  • Numerical model that considered the shrinking core model and elutriation and degradation of particles was developed to predict selective chlorination of ilmenite and carbo-chlorination of $TiO_2$ in a two stage fluidized bed chlorination furnace. It is possible to analyze the fluidized bed chlorination reaction to be able to reflect particle distribution for mass balances and the chlorination reaction. The numerical model showed an accuracy with error less than 6% compared with fluidized bed experiments. The chlorination degree with particle size change was greater with a smaller particle size, and there was a 100 min difference to obtain a chlorination degree of 1 between $75{\mu}m$ and $275{\mu}m$. This was not shown to such a great extent with variation of temperature ($800{\sim}1000^{\circ}C$), and there was only a 10 min difference to obtain a chlorination degree of 0.9. In the first selective chlorination process, the mass reduction rate approached to the theoretical value of 0.4735 after 180 min, and chlorination changed the Fe component into $FeCl_2$ or $FeCl_3$ and showed nearly 1. In the second carbo-chlorination process, the chlorination degree of $TiO_2$ approached 0.98 and the mass fraction reached 0.02 with conversion into $TiCl_4$. In the first selective chlorination process, 98% of $TiO_2$ was produced at 180 min, and this was changed into 99% of $TiCl_4$ after an additional 90 min. Also the mass reduction rate of $TiO_2$ was reduced to 99% in the second continuous carbo-chlorination process.