• Title/Summary/Keyword: Elman neural network

Search Result 33, Processing Time 0.033 seconds

Formation of Attention and Associative Memory based on Reinforcement Learning

  • Kenichi, Abe;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.22.3-22
    • /
    • 2001
  • An attention task, in which context information should be extracted from the first presented pattern, and the recognition answer of the second presented pattern should be generated using the context information, is employed in this paper. An Elman-type recurrent neural network is utilized to extract and keep the context information. A reinforcement signal that indicates whether the answer is correct or not, is only a signal that the system can obtain for the learning. Only by this learning, necessary context information became to be extracted and kept, and the system became to generate the correct answers. Furthermore, the function of an associative memory is observed in the feedback loop in the Elman-type neural network.

  • PDF

A New Recurrent Neural Network Architecture for Pattern Recognition and Its Convergence Results

  • Lee, Seong-Whan;Kim, Young-Joon;Song, Hee-Heon
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.1
    • /
    • pp.108-117
    • /
    • 1996
  • In this paper, we propose a new type of recurrent neural network architecture in which each output unit is connected with itself and fully-connected with other output units and all hidden units. The proposed recurrent network differs from Jordan's and Elman's recurrent networks in view of functions and architectures because it was originally extended from the multilayer feedforward neural network for improving the discrimination and generalization power. We also prove the convergence property of learning algorithm of the proposed recurrent neural network and analyze the performance of the proposed recurrent neural network by performing recognition experiments with the totally unconstrained handwritten numeral database of Concordia University of Canada. Experimental results confirmed that the proposed recurrent neural network improves the discrimination and generalization power in recognizing spatial patterns.

  • PDF

The Characteristic for Undrainded Shear Behavior of in Low-Plastic Silt and its Prediction (저소성 실트의 비배수 전단거동 특성과 예측)

  • Kim, Daeman
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.6
    • /
    • pp.61-70
    • /
    • 2008
  • In this study, undrained triaxial (CU) tests were performed on low-plastic silt of Nakdong River in order to investigate the undrained shear behavior of low-plastic silt. In experimental results, the deviator stress showed the hardening behavior after reaching its yield stress like the tendency of common sand, and the pore water pressure was gradually decreased to critical state after the maximum value. In the effective stress paths, regardless of consolidation stress or overconsolidation ratios, both a critical state line (CSL) and a phase transformation line (PTL) exist in the effective stress path that is similar to the case of sand. The behavior of low-plastic silt was predicted by the Modified Cam-Clay (MCC) model, the Jordan and the Elman-jordan model that is artificial neural network model. According to predicted results, the overall undrained shear behavior of low-plastic silt could not be predicted with the MCC model, but the Jordan and Elman-Jordan model showed well-matched experiment results.

  • PDF

A study on the spoken digit recognition performance of the Two-Stage recurrent neural network (2단 회귀신경망의 숫자음 인식에관한 연구)

  • 안점영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.3B
    • /
    • pp.565-569
    • /
    • 2000
  • We compose the two-stage recurrent neural network that returns both signals of a hidden and an output layer to the hidden layer. It is tested on the basis of syllables for Korean spoken digit from /gong/to /gu. For these experiments, we adjust the neuron number of the hidden layer, the predictive order of input data and self-recurrent coefficient of the decision state layer. By the experimental results, the recognition rate of this neural network is between 91% and 97.5% in the speaker-dependent case and between 80.75% and 92% in the speaker-independent case. In the speaker-dependent case, this network shows an equivalent recognition performance to Jordan and Elman network but in the speaker-independent case, it does improved performance.

  • PDF

A Study on the Settlement Prediction of Soft Ground Embankment Using Artificial Neural Network (인공신경망을 이용한 연약지반성토의 침하예측 연구)

  • Kim, Dong-Sik;Chae, Young-Su;Kim, Young-Su;Kim, Hyun-Dong
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.7
    • /
    • pp.17-25
    • /
    • 2007
  • Various geotechnical problems due to insufficient bearing capacity or excessive settlement are likely to occur when constructing roads or large complexes on soft ground. Accurate predictions of the magnitude of settlement and the consolidation time provide numerous options of ground improvement methods and, thus, enable to save time and expense of the whole project. Asaoka's method is probably the most frequently used one for settlement prediction and the empirical formulae such as Hyperbolic method and Hoshino's method are also often used. To find an elaborate method of predicting the embankment settlement, two recurrent type neural network models, such as Jordan model and Elman-Jordan model, are adopted. The data sets of settlement measured at several domestic sites are analyzed to obtain the most suitable model structures. It was shown from the comparison between predicted and measured settlements that Jordan model provides better predictions than Elman-Jordan model does and that the predictions using CPT results are more accurate than those using SPT results. It is believed that RNN using cone penetration test results can be a highly efficient tool in predicting settlements if enough field data can be obtained.

Real-time modeling prediction for excavation behavior

  • Ni, Li-Feng;Li, Ai-Qun;Liu, Fu-Yi;Yin, Honore;Wu, J.R.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.6
    • /
    • pp.643-654
    • /
    • 2003
  • Two real-time modeling prediction (RMP) schemes are presented in this paper for analyzing the behavior of deep excavations during construction. The first RMP scheme is developed from the traditional AR(p) model. The second is based on the simplified Elman-style recurrent neural networks. An on-line learning algorithm is introduced to describe the dynamic behavior of deep excavations. As a case study, in-situ measurements of an excavation were recorded and the measured data were used to verify the reliability of the two schemes. They proved to be both effective and convenient for predicting the behavior of deep excavations during construction. It is shown through the case study that the RMP scheme based on the neural network is more accurate than that based on the traditional AR(p) model.

A study on time-varying control of learning parameters in neural networks (신경망 학습 변수의 시변 제어에 관한 연구)

  • 박종철;원상철;최한고
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.201-204
    • /
    • 2000
  • This paper describes a study on the time-varying control of parameters in learning of the neural network. Elman recurrent neural network (RNN) is used to implement the control of parameters. The parameters of learning and momentum rates In the error backpropagation algorithm ate updated at every iteration using fuzzy rules based on performance index. In addition, the gain and slope of the neuron's activation function are also considered time-varying parameters. These function parameters are updated using the gradient descent algorithm. Simulation results show that the auto-tuned learning algorithm results in faster convergence and lower system error than regular backpropagation in the system identification.

  • PDF

Enhancement of QRS Complex using a Neural Network based ALE (신경망 ALE를 사용한 QRS complex의 증대)

  • 최한고;심은보
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.5
    • /
    • pp.487-494
    • /
    • 2000
  • 본 논문에서는 배경잡음이 섞여 있는 QRS 파의 증대를 위해 신경망에 근거한 적응라인증대기(ALE) 적용을 다루고 있다. Elman과 Jordan RNN 구조의 합성형태를 갖는 수정된 완전연결 리커런트 신경망이 ALE의 비션형 적응필터로 사용되고 있다. 신경망 노드사이의 연결계수와 이득, 기울기, 지연과 같은 노드 활성함수의 변수들이 기울기 강하 알고리즘을 사용하여 학습이 반복될 때마다 갱신된다. 수정된 신경망은 먼저 미지의 선형과 비선형 시스템 identification을 수행함으로써 평가하였다. 그리고 미약한 QRS를 증대시키기 위해서 적당한 크기의 잡음과 매우 심한 잡음이 포함된 실제의 ECG 신호를 비선형 신경망 적응필처를 사용하는 ALE에 입력하였다. 수정된 신경망은 시스템 identification에 사용하기가 적합함을 확인하였으며, 시뮬레이션 결과에 의하면 신경망 ALE는 잡음 ECG 신호로부터 QRS 파를 증대를 잘 수행하였다.

  • PDF

A Study on the Reliability Improvement of Partial Discharge Pattern Recognition using Neural Network Combination (NNC) Method (Neural Network Combination (NNC) 기법을 이용한 부분방전 패턴인식의 신뢰성 향상에 관한 연구)

  • Kim, Seong-Il;Jeong, Seung-Yong;Koo, Ja-Yoon;Lim, Yun-Sok;Koo, Sun-Geun
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.9-11
    • /
    • 2005
  • 본 연구는 GIS 진단신뢰성 향상기술 개발을 목적으로, 16개의 인위적 결함을 이용하여 부분방전 신호를 발생시키고 검출하여 그 패턴인식 확률을 높이기 위하여 신경망에 Genetic Algorithm (GA) 을 적용하였다. 이를 위하여 다음과 같은 5가지 서로 다른 신경망 모델을 선택하였다: Back Propagation (BP), Jordan-Elman Network (JEN), Principal Component Analysis (PCA), Self-Organizing Feature Map (SOFM) 및 Support Vector Machine (SVM). 이와 같이 선택된 모델에 동일한 데이터를 학습 시키고 패턴인식 확률을 비교 및 분석하였다. 실험 결과에 의하면, BP의 인식률이 가장 높고 다음으로 JEN의 인식률이 높이 나타났으며, 후자의 경우 모든 결함에 대하여 정확한 패턴분류를 한 반면에 전자의 경우 1.8% 의 분류 오차가 발생하였다. 따라서 인식률이 높은 신경망이 더 정확한 패턴분류를 보장하지 못한다는 실험적 결과를 고려 할 때, 인식률이 높은 두 개의 모델을 선정하여 각각의 출력에 일정한 가중치를 주고 합산하여 새로운 출력을 얻는 방법을 제안한다.

  • PDF

A Study on Optimization of Partial Discharge Pattern Recognition using Genetic Algorithm (Genetic Algorithm을 이용한 부분방전 패턴인식 최적화 연구)

  • Kim, Seong-Il;Jung, Seung-Yong;Koo, Ja-Yoon;Jang, Yong-Mu
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.145-146
    • /
    • 2006
  • 본 논문은 부분방전(PD: Partial Discharge)의 패턴인식 확률 극대화를 목적으로 신경망(NN: Neural Network) 파라미터 중에서 은닉층 뉴런의 수, 모멘텀(momentum)의 Step size와 Decay rate 를 최적화하기 위하여 유전 알고리즘(GA: Genetic Algonthm)을 적응하였다. 실험적 연구의 대상으로서, GIS(Gas Insulated Switchgear)사고의 주요 원인으로 보고되어있는 결함들을 인위적으로 모의한 16개 Test cell을 이용하여 부분방전을 발생시켰다. 부분방전 신호는 본 연구팀이 개발한 센서를 이용하여 검출되어 데이터베이스가 구축되어 그로부터 추출된 학습 데이터들의 학습에 다음과 같은 5가지 신경망 모델이 적응되었다: Multilayer Perception (MLP), Jordan-Elman Network (JEN), Recurrent Network (RN), Self-Organizing Feature Map (SOFM), Time-Lag Recurrent Network (TLRN). 유전 알고리즘 적용 효율성을 분석하기 위하여 동일한 데이터를 이용하여 다음과 같은 두 가지 방법을 적용한 결과를 상호 비교하였다. 우선 상기 선택된 모델만 적용하였고 다근 하나는 상기 모델과 Genetic Algorithm이 동시에 적용되었다. 모든 모델에 대하여 학습오차와 패턴 분류 확률을 비교한 결과, 유전 알고리즘 적응 시 부분방전 패턴인식 확률이 향상되었음이 확인되어 향후 신뢰성 있는 GIS 부분방전 진단기술에 활용될 수 있을 것으로 사료된다.

  • PDF