• Title/Summary/Keyword: Elliptical dome

Search Result 5, Processing Time 0.015 seconds

Fluctuating Pressure Coefficients Distributions for Elliptical Dome Roof (타원형 돔 지붕의 변동풍압특성)

  • Lee, Jong-Ho;Cheon, Dong-Jin;Kim, Yong-Chul;Park, Sang-Woo;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.63-71
    • /
    • 2020
  • The fluctuating wind pressure of the low rise ratio(f/D=0.1) for the elliptical dome roof was analyzed to compare it with the previous studies of circular dome roofs. Wind tunnel test were conducted on a total of 10 wind directions from 0° to 90° while changing wall height-span ratios(H/D=0.1-0.5). For this, meanCP, rmsCP and wind pressure spectrum were analyzed. The analysis result leads to find differences in the shape of the spectra in the spanwise direction and leeward of the elliptical dome according to the wind direction variations of the elliptical dome roof.

Analysis of External Peak Pressure Coefficients for Cladding in Elliptical Retractable Dome Roof by Wind Tunnel Test (풍동 실험을 통한 타원형 개폐식 돔 지붕의 외장재용 풍압 계수 분석)

  • Lee, Jong-Ho;Kim, Yong-Chul;Cheon, Dong-Jin;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.1
    • /
    • pp.49-59
    • /
    • 2020
  • This study investigates the wind pressure characteristics of elliptical plan retractable dome roof. Wind tunnel experiments were performed on spherical dome roofs with varying wall height-span ratios (0.1~0.5) and opening ratios (0%, 10%, 30% and 50%), similar to previous studies of cirular dome roofs. In previous study, wind pressure coefficients for open dome roofs have been proposed since there are no wind load criteria for open roofs. However, in the case of Eeliptical plan retractable dome roof, the wind pressure coefficient may be largely different due to the presence of the longitudinal direction and transverse direction. The analysis results leads to the exceeding of maximum and minimum wind pressure coefficients KBC2016 code.

A Study on the Optimal Design of TMD According to the Shape of Large Spatial Structures Part 2 (대공간 구조물의 형상에 따른 TMD 최적 설계에 관한 연구 Part 2)

  • Bae, Seok-Hong;Lee, Young-Rak;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.83-91
    • /
    • 2020
  • In this study, a tuned mass damper(TMD) was installed to control the displacement response to earthquakes by generalizing to six analysis models according to the shape of the upper structure based on the case of various large spatial structures around the world. The six analysis models are ribbed type, latticed type, elliptical type, gable type, barrel type, and stadium type composed of 3D arch trusses. In this paper, ribbed type, latticed type and elliptical type were analyzed. The mass of each TMD was set to 1% of the total structural mass. Result of analyzing the optimal number and position of the analysis model, the displacement response control was the most excellent in the model with 6 and 8 TMDs, and the displacement response decreased in most cases. The displacement response control was better with installing the TMD at the edge point than focusing the TMD at the center of the analysis model. However, when 10 or more TMDs are installed or concentrated in the center, large loads intensively act on the structure, resulting in increased displacement. Therefore, although it is slightly different depending on the shape, it is judged that the displacement response control is the best to install 6 and 8 TMDs at the close to the edge point.

A Study on the Optimal Design of TMD According to the Shape of Large Spatial Structures Part 1 (대공간 구조물의 형상에 따른 TMD 최적 설계에 관한 연구 Part 1)

  • Bae, Seok-Hong;Lee, Young-Rak;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.73-81
    • /
    • 2020
  • In this study, a tuned mass damper(TMD) was installed to control the displacement response to earthquakes by generalizing to six analysis models according to the shape of the upper structure based on the case of various large spatial structures around the world. The six analysis models are ribbed type, latticed type, elliptical type, gable type, barrel type, and stadium type composed of 3D arch trusses. In this paper, ribbed type, latticed type and elliptical type were analyzed. The mass of each TMD was set to 1% of the total structural mass. Result of analyzing the optimal number and position of the analysis model, the displacement response control was the most excellent in the model with 6 and 8 TMDs, and the displacement response decreased in most cases. The displacement response control was better with installing the TMD at the edge point than focusing the TMD at the center of the analysis model. However, when 10 or more TMDs are installed or concentrated in the center, large loads intensively act on the structure, resulting in increased displacement. Therefore, although it is slightly different depending on the shape, it is judged that the displacement response control is the best to install 6 and 8 TMDs at the close to the edge point.

Monitoring Result of Rock Mass Behavior during Excavation of Deep Cavern (대심도 지하 공간 굴착시의 암반거동 - 일본 SUPER KAMIOKANDE의 사례 -)

  • Lee Hong-Gyu
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.11-25
    • /
    • 2006
  • The world's largest nucleon decay experiment facility is constructed at a depth of approximately 1,000 meters, in the Kamio Mine, Japan. The excavated cavern is consisted of a cylinder of 42.4 m high and a semi elliptical dome of 15.2 m high, with a bottom diameter of 40 m. The total excavation volume is approximately $69,000\;m^3$. Because of the character as a large cavern excavation in deep underground, there is many unknown factors in rock mechanics. Based on the results of rock test and numerical analysis, the monitoring of rock mass behavior accompanying progress of construction was performed by various instruments installed in the rock mass surrounding the cavern. The monitoring data was used in the study of measures for cavern stability.