• Title/Summary/Keyword: Elliptic Model

Search Result 176, Processing Time 0.024 seconds

Simulation of Methane Swirl Flame in a Gas Turbine Model Combustor (가스터빈 모사 연소기에서 선회 확산 화염의 연소특성 해석)

  • Joung, Dae-Ro;Huh, Kang-Yul
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.118-125
    • /
    • 2007
  • The firtst-order conditional moment closure (CMC) model is applied to CH4/air swirl diffusion flame in a gas turbine model combustor. The flow and mixing fields are calculated by fast chemistry assumption with SLFM library and a beta function pdf for mixture fraction. RNG k-e model is used to consider the swirl flame in a confined wall. Reacting scalar fields are calculated by elliptic CMC formulation with chemical kinetic mechanism, GRI Mech 3.0. Validation is done against measurement data for mean flow and scalar fields in the model combustor [1]. Results show reasonable agreement with the mean mixture fraction and its variance, while temperature is overpredicted as the level of local extinction increases. The second-order CMC model is needed to consider local extinction with considerable conditional fluctuations near the nozzle.

  • PDF

A Numerical Model of PCGM for Mild Slope Equation (완경사 파랑식에 대한 PCGM 수치모형)

  • 서승남;연영진
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.2
    • /
    • pp.164-173
    • /
    • 1994
  • A numerical model to solve mild slope equation is developed by use of a preconditioned conjugate gradient method (PCGM). In the present paper. accurate boundary conditions and a better preconditioner are employed which are improved from the existing method of Panchang et al. (1991). Computational procedures are focused on weakly nonlinear waves, and emerged problems to make a more accurate model are discussed. The results of model are tested against laboratory results of both circular and elliptic shoals. Model results of wave amplitude show excellent agreement with laboratory data and thes thus model can be used as a powerful tool to calculate wave transformation in shallow waters with complex bathymetry.

  • PDF

Application of ASM and PHOENICS for Optimal Operation of Wastewater Treatment Plant (하수처리장 운영의 최적화를 위한 ASM, PHOENICS의 적용)

  • Kim, Joon Hyun;Han, Mi-Duck;Han, Yung Han
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.73-82
    • /
    • 2000
  • This study was implemented to find an optimal model for wastewater treatment processes using PHOENICS(Parabolic, hyperbolic or Elliptic Numerical Integration Code Series) and ASM(Activated Sludge Model). PHOENICS is a general software based upon the laws of physics and chemistry which govern the motion of fluids, the stresses and strains in solids, heat flow, diffusion, and chemical reaction. The wastewater flow and removal efficiency of particle in two phase system of a grit chamber in wastewater treatment plant were analyzed to inquire the predictive aspect of the operational model. ASM was developed for a biokinetic model based upon material balance in complex activated sludge systems, which can demonstrate dynamic and spatial behavior of biological treatment system. This model was applied to aeration tank and settling chamber in Choonchun city, and the modeling result shows dynamic transport in aeration tank. PHOENCS and ASM could be contributed for the optimal operation of wastewater treatment plant.

  • PDF

Elliptic Numerical Wave Model Solving Modified Mild Slope Equation (수정완경사방정식의 타원형 수치모형)

  • YOON JONG-TAE
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.4 s.59
    • /
    • pp.40-45
    • /
    • 2004
  • An efficient numerical model of the modified mild slope equation, based on the robust iterative method is presented. The model developed is verified against other numerical experimental results, related to wave reflection from an arc-shaped bar and wave transformation over a circular shoal. The results show that the modified mild slope equation model is capable of producing accurate results for wave propagation in a region where water depth varies substantially, while the conventional mild slope equation model yeilds large errors, as the mild slope assumption is violated.

Presentation Control System using Vision Based Hand-Gesture Recognition (Vision 기반 손동작 인식을 활용한 프레젠테이션 제어 시스템)

  • Lim, Kyoung-Jin;Kim, Eui-Jeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.281-284
    • /
    • 2010
  • In this paper, we present Hand-gesture recognition for actual computing into color images from camera. Color images are binarization and labeling by using the YCbCr Color model. Respectively label area seeks the center point of the hand from to search Maximum Inscribed Circle which applies Voronoi-Diagram. This time, searched maximum circle and will analyze the elliptic ingredient which is contiguous so a hand territory will be able to extract. we present the presentation contral system using elliptic element and Maximum Inscribed Circle. This algorithm is to recognize the various environmental problems in the hand gesture recognition in the background objects with similar colors has the advantage that can be effectively eliminated.

  • PDF

RESONANT MOTION OF A PARTICLE ON AN AXISYMMETRIC CONTAINER SUBJECT TO HORIZONTAL EXCITATION

  • Suh, Yong-Kweon
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.2 no.1
    • /
    • pp.51-70
    • /
    • 1996
  • This study is generalization of the study of Miles[Physica 11D, 1984, pp.309-323]on the resonant motion of a spherical pendulum, which is equivalent to a particle on a spherical container subject to a linear, horizontal excitation. This study covers an arbitrary shape of container and a more general excitation (horizontal but elliptic motion). The averaging method is applied to reduce the governing equations to an autonomous system with cubic nonlinear terms, under the assumption of small amplitude of the container motion. It is shown that both the container shape and the excitation pattern affect the particle dynamics. Under the linear excitation, the anharmonic motion of the particle is possible only for a certain finite range of the parameter a controling the container shape. Stability of the particle's harmonic motion is also influenced by the excitation pattern; as the excitation trajectory becomes closer to a circle, the particle's motion has a stronger tendency to become stable and to follow the rotational direction of the excitation. Under a circular excitation, the motion is always stable and circular with the same rotational direction as the excitation. Analogy between the present model and that of the surface wave inside a circular is studied quantitatively.

Certificateless multi-signer universal designated multi-verifier signature from elliptic curve group

  • Deng, Lunzhi;Yang, Yixian;Chen, Yuling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5625-5641
    • /
    • 2017
  • Certificateless public key cryptography resolves the certificate management problem in traditional public key cryptography and the key escrow problem in identity-based cryptography. In recent years, some good results have been achieved in speeding up the computation of bilinear pairing. However, the computation cost of the pairing is much higher than that of the scalar multiplication over the elliptic curve group. Therefore, it is still significant to design cryptosystem without pairing operations. A multi-signer universal designated multi-verifier signature scheme allows a set of signers to cooperatively generate a public verifiable signature, the signature holder then can propose a new signature such that only the designated set of verifiers can verify it. Multi-signer universal designated multi-verifier signatures are suitable in many different practical applications such as electronic tenders, electronic voting and electronic auctions. In this paper, we propose a certificateless multi-signer universal designated multi-verifier signature scheme and prove the security in the random oracle model. Our scheme does not use pairing operation. To the best of our knowledge, our scheme is the first certificateless multi-signer universal designated multi-verifier signature scheme.

A Study on the Numerical Analysis of the Viscous Flow for a Full Ship Model (비대선 모형에 대한 점성유동의 수치해석연구)

  • 박명규;강국진
    • Journal of the Korean Institute of Navigation
    • /
    • v.19 no.2
    • /
    • pp.13-22
    • /
    • 1995
  • This paper presents the numerical analysis results of the viscous flow for a full ship model. The mass and momentum conservation equations are used for governing equations, and the flow field is discretized by the Finite-Volume Method for the numerical calculation. An algebraic grid and elliptic grid generation techniques are adopted for generation of the body-fitted coordinates system, which is suitable to ship's hull forms. Time-marching procedure is used to solve the three-dimensional unsteady problem, where the convection terms are approximated by the QUICK scheme and the 2nd-order central differencing scheme is used for other spatial derivatives. A Sub-Grid Scale turbulence model is used to approximate the turbulence, and the wall function is used at the body surface. Pressure and velocity fields are calculated by the simultaneous iteration method. Numerical calculations were accomplished for the Crude Oil Tanker(DWT 95,000tons, Cb=0.805) model. Calculation results are compared to the experimental results and show good agreements.

  • PDF

A Study on the Numerical Model for Predicting Shoreline Changes (해안선 변형 예측에 대한 수치모델 연구)

  • 박정철;한건모;김재중
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.156-161
    • /
    • 1993
  • Structures built in the coastal area often cause unexpectedly severe shoreline change on the adjacent beaches. Therefore, beach evolution is one of the most important problem in the coastal engineering. Beach evolution in the coastal area consisted of wave transform model and sediment transport model. Ebersoale's elliptic mild slope equation which considered the effect of combind wave refraction and perline and Dean's one line theory for the sediment transport model were used in this study. Kwangan beach was selected as study area and field observations were done. Numerical simulation for beach evolution in the Kwangan beach was performed and shoreline change predictions were suggested as results.

  • PDF

SUPERCONVERGENT GRADIENT RECOVERY FOR THE PARABOLIC INITIAL BOUNDARY VALUE PROBLEM

  • LAKHANY, AM;WHITEMAN, JR
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.3 no.1
    • /
    • pp.1-15
    • /
    • 1999
  • Gradient recovery techniques for the second order elliptic boundary value problem are well known. In particular, the Midpoint and the Vertex Recovery Operator have been studied by various authors and under suitable assumptions on the regularity of the unknown solution superconvergence property of these recovered gradients have been proved. In this paper we extend these results to the recovered gradient of the finite element approximation to a model initial-boundary value problem, and go on to prove superconvergence result for this recovered gradient in a discrete (in time) error norm.

  • PDF