• Title/Summary/Keyword: Ellipse model

Search Result 84, Processing Time 0.026 seconds

Robust pupil detection and gaze tracking under occlusion of eyes

  • Lee, Gyung-Ju;Kim, Jin-Suh;Kim, Gye-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.10
    • /
    • pp.11-19
    • /
    • 2016
  • The size of a display is large, The form becoming various of that do not apply to previous methods of gaze tracking and if setup gaze-track-camera above display, can solve the problem of size or height of display. However, This method can not use of infrared illumination information of reflected cornea using previous methods. In this paper, Robust pupil detecting method for eye's occlusion, corner point of inner eye and center of pupil, and using the face pose information proposes a method for calculating the simply position of the gaze. In the proposed method, capture the frame for gaze tracking that according to position of person transform camera mode of wide or narrow angle. If detect the face exist in field of view(FOV) in wide mode of camera, transform narrow mode of camera calculating position of face. The frame captured in narrow mode of camera include gaze direction information of person in long distance. The method for calculating the gaze direction consist of face pose estimation and gaze direction calculating step. Face pose estimation is estimated by mapping between feature point of detected face and 3D model. To calculate gaze direction the first, perform ellipse detect using splitting from iris edge information of pupil and if occlusion of pupil, estimate position of pupil with deformable template. Then using center of pupil and corner point of inner eye, face pose information calculate gaze position at display. In the experiment, proposed gaze tracking algorithm in this paper solve the constraints that form of a display, to calculate effectively gaze direction of person in the long distance using single camera, demonstrate in experiments by distance.

A Study on Stochastic Simulation Models to Internally Validate Analytical Error of a Point and a Line Segment (포인트와 라인 세그먼트의 해석적 에러 검증을 위한 확률기반 시뮬레이션 모델에 관한 연구)

  • Hong, Sung Chul;Joo, Yong Jin
    • Spatial Information Research
    • /
    • v.21 no.2
    • /
    • pp.45-54
    • /
    • 2013
  • Analytical and simulation error models have the ability to describe (or realize) error-corrupted versions of spatial data. But the different approaches for modeling positional errors require an internal validation that ascertains whether the analytical and simulation error models predict correct positional errors in a defined set of conditions. This paper presents stochastic simulation models of a point and a line segm ent to be validated w ith analytical error models, which are an error ellipse and an error band model, respectively. The simulation error models populate positional errors by the Monte Carlo simulation, according to an assumed error distribution prescribed by given parameters of a variance-covariance matrix. In the validation process, a set of positional errors by the simulation models is compared to a theoretical description by the analytical error models. Results show that the proposed simulation models realize positional uncertainties of the same spatial data according to a defined level of positional quality.

Stress analysis of a two-phase composite having a negative-stiffness inclusion in two dimensions

  • Wang, Yun-Che;Ko, Chi-Ching
    • Interaction and multiscale mechanics
    • /
    • v.2 no.3
    • /
    • pp.321-332
    • /
    • 2009
  • Recent development in composites containing phase-transforming particles, such as vanadium dioxide or barium titanate, reveals the overall stiffness and viscoelastic damping of the composites may be unbounded (Lakes et al. 2001, Jaglinski et al. 2007). Negative stiffness is induced from phase transformation predicted by the Landau phase transformation theory. Although this unbounded phenomenon is theoretically supported with the composite homogenization theory, detailed stress analyses of the composites are still lacking. In this work, we analyze the stress distribution of the Hashin-Shtrikman (HS) composite and its two-dimensional variant, namely a circular inclusion in a square plate, under the assumption that the Young's modulus of the inclusion is negative. Assumption of negative stiffness is a priori in the present analysis. For stress analysis, a closed form solution for the HS model and finite element solutions for the 2D composite are presented. A static loading condition is adopted to estimate the effective modulus of the composites by the ratio of stress to average strain on the loading edges. It is found that the interfacial stresses between the circular inclusion and matrix increase dramatically when the negative stiffness is so tuned that overall stiffness is unbounded. Furthermore, it is found that stress distributions in the inclusion are not uniform, contrary to Eshelby's theorem, which states, for two-phase, infinite composites, the inclusion's stress distribution is uniform when the shape of the inclusion has higher symmetry than an ellipse. The stability of the composites is discussed from the viewpoint of deterioration of perfect interface conditions due to excessive interfacial stresses.

Depth Measurement of Materials Attached to Cylinder Using Line Laser (라인 레이저를 이용한 원통 부착물의 심도 측정)

  • Kim, Yongha;Ko, Kwangjin;Yeon, Sungho;Kim, Jaemin
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.225-233
    • /
    • 2017
  • Line-laser beams are used for accurate measurement of 3D shape, which is robust to external illumination. For depth measurement, we project a line-laser beam across an object from the face and take an image of the beam on the object surface using a CCD camera at some angle with respect to the face. For shape measurement, we project parallel line-laser beams with narrow line to line distance. When a layer of thin materials attached to a cylinder is long narrow along its circumference, we can measure the shape of the layer with a small number of parallel line beams if we project line beams along the circumference of the cylinder. Measurement of the depth of the attached materials on a line-laser beam is based on the number of pixels between an imaginary line along the imaginary cylinder without the attached materials and the beam line along the materials attached to the cylinder. For this we need to localize the imaginary line in the captured image. In this paper, we model the shape of the line as an ellipse and localize the line with least square estimate. The proposed method results in smaller error (maximum 0.24mm) than a popular 3D depth camera (maximum 1mm).

Seismic Traveltime Tomography in Anisotropic Black Shale (이방성 특성이 강한 흑색 셰일에서 탄성파 주시 토모그래피)

  • Kang, Jong-Seok;Cha, Young-Ho;Lee, Kwang-Bae;Jo, Churl-Hyun
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.393-398
    • /
    • 2007
  • Seismic traveltime tomography technique was conducted at a site composed of black shale. It is well known that black shale has strong anisotropic property. Therefore, the anisotropic property of black shale has to be considered to obtain the appropriate subsurface velocity model by an inversion process. To estimate the anisotropic constant of the velocity of the black shale in the survey area, the relation between the velocity, which is calculated by the straight ray path and the first arrival time, and the angle of the ray propagation was examined. The elliptically shaped relation was found and it reveals that the black shale contains the anisotropic property of velocity. It was also noticed that the horizontal velocity is faster than the vertical velocity. When the estimated anisotropic constant was applied in the process of the velocity inversion for three sets of field data, we could obtain the appropriate velocity structures of the site that is consistent with the result of the geological survey.

A Study on Ship Collision Avoidance Algorithm by COLREG (국제해상충돌예방규칙에 따른 충돌회피 알고리즘에 관한 연구)

  • Kim, Dong-Gyun;Jeong, Jung-Sik;Park, Gyei-Kark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.290-295
    • /
    • 2011
  • On the basis of DCPA(Distance to Closest Point of Approach) and TCPA(Time to CPA), the conventional algorithms for collision avoidances have a drawback that the '72 CORLEGs(International Regulations for Preventing Collisions at Sea, 1972) has not taken into account to prevent collisions between ships. In this paper, the proposed algorithm decides whether the own ship is a give-way vessel or a stand-on vessel by observing the relative bearing of the encountered ship. To determine the ship position and time for collision avoidance, the proposed algorithm utilizes the ellipse model for ship safety domain. The computer simulation is done to represent the process of adversive behavior. Using the proposed method, the past maritime accident is analyzed. The proposed method can be effectively applied to collision avoidance by CORLEGs even when the target ship's navigational lights is invisible in poor weather and/or in the restricted visibility.

Wake-induced vibration of the hanger of a suspension bridge: Field measurements and theoretical modeling

  • Li, Shouying;Deng, Yangchen;Lei, Xu;Wu, Teng;Chen, Zhengqing
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.169-180
    • /
    • 2019
  • The underlying mechanism of the wind-induced vibration of the hangers of the suspension bridges is still not fully understood at present and hence is comprehensively examined in this study. More specifically, a series of field measurements on the No. 2 hanger of the Xihoumen Bridge was first carefully conducted. Large amplitude vibrations of the hanger were found and the oscillation amplitude of the leeward cable was obviously larger than that of the windward cables. Furthermore, the trajectory of the leeward cable was close to an ellipse, which agreed well with the major characteristics of wake-induced vibration. Then, a theoretical model for the wake-induced vibration based on a 3-D continuous cable was established. To obtain the responses of the leeward cable, the finite difference method (FDM) was adopted to numerically solve the established motion equation. Finally, numerical simulations by using the structural parameters of the No. 2 hanger of the Xihoumen Bridge were carried out within the spatial range of $4{\leq}X{\leq}10$ and $0{\leq}Y{\leq}4$ with a uniform interval of ${\Delta}X={\Delta}Y=0.25$. The results obtained from numerical simulations agreed well with the main features obtained from the field observations on the Xihoumen Bridge. This observation indicates that the wake-induced vibration might be one of the reasons for the hanger oscillation of the suspension bridge. In addition, the effects of damping ratio and windward cable movement on the wake-induced vibration of the leeward cable were numerically investigated.

Rock cutting behavior of worn specially-shaped PDC cutter in crystalline rock

  • Liu, Weiji;Yang, Feilong;Zhu, Xiaohua;Zhang, Yipeng;Gong, Shuchun
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.249-263
    • /
    • 2022
  • The specially-shaped Polycrystalline Diamond Compact (PDC) cutter is widely used in drill bit design due to its advantages of high rock cutting efficiency, strong impact resistance and long service life in hard and abrasive formation drilling. A detailed understanding of rock cutting behavior of worn specially-shaped PDC cutter is essential to improve the drilling efficiency and decrease the drilling costs. In this paper, the theoretical models of two new principles (loading performance (LP) and cutting performance (CP)) are derived for evaluating the cutting process of worn specially-shaped cutter, the theoretical models consider the factors, such as cutter geometry, aggressiveness, stress state, working life, and rock cutting efficiency. Besides, the numerical model of heterogeneous granite is developed using finite element method combined with Voronoi tessellation, the LP and CP of 12 kinds of worn specially-shaped PDC (SPDC) cutters are analyzed. The results found that the mechanical specific energy (MSE) of worn cutters first increase and then decrease with increasing the cutting depth, and the MSE increase with the increase of back rake angle except for Conical cutter and Wedge-shaped cutter. From the perspective of CP, the worn PDC cutters are more suitable for the smaller cutting depths, and the back rake angle has little effect on the CP of the specially-shaped worn PDC cutters. Conical cutter, Saddle-shaped cutter and Ellipse-shaped cutter have the highest CP value, while Rhombus-shaped cutter, Convex cutter and Wedge-shaped cutter have the lowest value in selecting cutters. This research leads to an enhanced understanding of rock-breaking mechanisms of worn SPDC cutters, and provides the basis to select of specially-shaped PDC cutters for the specific target formation.

Characteristics of Tidal Current and Tidal Residual Current in the Chunsu Bay, Yellow Sea, Korea based on Numerical Modeling Experiments (수치모델링 실험을 통한 서해 천수만의 조류와 조석잔차류 특성)

  • Jung, Kwang Young;Ro, Young Jae;Kim, Baek Jin
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.4
    • /
    • pp.207-218
    • /
    • 2013
  • This study is based on a series of numerical modeling experiments to understand the circulation and its change in the Chunsu Bay (CSB), Yellow Sea of Korea. A skill analysis was performed for the tidal height and tidal current of the observation data using the amplitude and phase of the 4 major tidal constituents respectively for verification of modeling experimental results. As a result, most of the skill score was seen to be over 90%, so numerical model experiment results can be said to be in good agreement with the observed tidal height and tidal current. Tidal wave proceeded from the entrance of the CSB towards inside, and the tidal range gradually increased to the north. It took about 10 to 30 minutes for the tidal wave to reach to northern end. The tidal wave showed a characteristic to rotate counter-clockwise in the southern part. The tidal current flowed to the north-south direction along the bottom topography; the angle of the major axis appeared alongside the isobath. It showed the characteristics of reversing tidal current with the minor axis less than 10% of the major axis. The strength of the tidal residual current that is influenced by geographical factors including bathymetry and coastline showed the range of 1~30 cm/sec, greater in the south channel and smaller in northern Bay. Two pairs of cyclonic/anti-cyclonic eddies around Jukdo and 3~4 pairs of strong eddies at the southern part of CSB in hundreds of m to a few km size by relative vorticity derived from the tidal residual current.

Significance Analysis of Facility Fires Though Spatial Econometrics Assessment (공간계량분석 방법에 따른 시설물 화재 발생 유의성 분석)

  • Seo, Min Song;Yoo, Hwan Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.281-293
    • /
    • 2020
  • Recently, large and small fires have been happening more often in Korea. Fire is one of the most frequent disasters along with traffic accidents in korean cities, and this frequency is closely related to the land use and the type of facilities. Therefore, in this study, the significance of fires was analyzed by considering land use, facility types, human and social factors and using 10 years of fire data in Jinju city. Based on this, OLS (Ordinary Least Square) regression analysis, SLM (Spatial Lag Model) and SEM (Spatial Error Model) using space weights, were compared and analyzed considering the location of the fire and each factor, then a statistical model with high suitability was presented. As a result, LISA analysis of spatial distribution patterns of fires in Jinju city was conducted, and it was proved that the frequency of fires was high in the order as follow, central commercial area, industrial area and residential area. Multiple regression analysis was performed by integrating demographic, social, and physical variables. Therefore, the three models were compared and analyzed by applying spatial weighting to the derived factors. As a result of the significance test, the spatial error model was analyzed to be the most significant. The facilities that have the highest correlation with fire occurrence were second type neighborhood facilities, followed by detached house, first type neighborhood facilities, number of households, and sales facilities. The results of this study are expected to be used as significant data to identify factors and manage fire safety in urban areas. Also, through the analysis of the standard deviation ellipsoid, the distribution characteristics of each facility in the residential area, industrial area, and central commercial area among the use areas were analyzed. In, the second type neighborhood facility with the highest fire risk was concentrated in the center. The results of these studies are expected to be used as useful data for identifying factors and managing fire safety in urban areas.