• Title/Summary/Keyword: Elint System

Search Result 14, Processing Time 0.02 seconds

A Broadband Active Composite Dipole Antenna for Direction-finding Applications at V/UHF-band (V/UHF 대역에서 방향탐지를 위한 광대역 능동 복합 다이폴 안테나)

  • Choi, Jun-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.1 s.24
    • /
    • pp.33-40
    • /
    • 2006
  • A compact broadband active composite dipole antenna for direction finding system at the V/UHF-band is presented. It uses the composite structure which improves the antenna gain and the active circuit for broadband operation. This type of antenna has a high gain more than that of one dipole antenna within limited length(1m). The basic design and performance of both antenna structure and integrated active circuit are presented.

An Accurate Direction Finding Technology Using a Phase Comparison and Time Difference of Arrival (위상비교와 시간차를 복합한 정밀 방향탐지 기술)

  • Lim, Joong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5208-5213
    • /
    • 2011
  • In this paper, we proposed a new direction finding(DF) technology using TDOA(time-difference of arrival) and PDOA(phase difference of arriving signal) method. The proposed technology has a good DF accuracy without DF ambiguity. TDOA or PDOA technology is used to the most of intelligence systems in 21 century. The principle of TDOA is to receive a signal with two parallel antennas, measure the time difference of arrival signal, and converse the time difference to the direction of incident signal. Those technology make a DF system small size but the DF accuracy is low into short antenna installation distance. The principle of PDOA is similar to TDOA except measuring the phase difference of arrival signal, These technology get a good DF accuracy in short antenna installation distance but have a DF ambiguity. The proposed DF method is simulated into DF system operation environment with noise, and has a good DF accuracy.

Wideband Cavity Back Antenna for Signal Intelligence (신호 정보 수집용 광대역 캐비티 백 안테나)

  • Jeoung, Gu-Ho;Lee, Seong-Kyu;Choi, Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.12
    • /
    • pp.1044-1052
    • /
    • 2016
  • In this paper, a cavity back slot antenna with a rotated rectangular patch is proposed. The proposed antenna consists of a ground plane with cavity structure, a microstrip feed line, and a rectangular patch with slot. With a dimension of $55mm{\times}40mm{\times}10mm$, the proposed antenna has the wide bandwidth due to the cavity structure. Measured 10 dB return loss bandwidth and fractional bandwidth of the proposed antenna is 5,030 MHz(3.02~8.05 GHz) and 90.9 % at the center frequency of 5.05 GHz. The proposed antenna is designed and simulated using ANSYS HFSS v.15.0.0. The designed antenna is fabricated and tested to validate its performances.

Japan's Missile Detection Capability using Electromagnetic Wave in free space (일본의 자유공간에서 전자파를 이용한 미사일 탐지능력)

  • Lee, Yongsik
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.78-86
    • /
    • 2017
  • Japan has a lot of interest about weapons systems development of surrounding national and has invested heavily in securing intelligence assets to get information about them, because of conflict issues between Japan and Russia with four northern islands, China with Senkaku Islands and entry policy into the Pacific. Japan has used a large budget to detect and intercept ballistic missile for reasons of the launch of the Taepodong missile in 1998. After took over SIGINT equipments which U.S. force had operated in 1950s~1960s, Japan made a technological analysis and advanced IT technology to produce superior equipments. Japan's SDF has installed them in 19 locations across Japan. In addition, Japan's JASDF has installed advanced early warning RADAR to detect aircraft and high speed ballistic missile entering JADIZ with S-band in 28 locations across Japan. It is possible to detect missile launch preparations, engine tests, and launch moments at any time for operation of 6 satellites high resolution reconnaissance system and 6 aegis ships. In close cooperation with the US, Japan is accessible to the SBIRS networks which detects the launch of a ballistic missile in neighboring countries. In the future, Because the United States wants Japan to act as part of the United States in East, south Asia, it is believed that the exchange of intelligence on the surrounding countries between two countries will be enhanced.