• Title/Summary/Keyword: Elicitor

Search Result 151, Processing Time 0.024 seconds

Effects of Chitosan and Lactic Acid on Enzymatic Activities and Bioactive Compounds during Germination of Black Rice

  • Kim, Kwan-Soo;Jang, Hae-Dong
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.3
    • /
    • pp.199-205
    • /
    • 2004
  • The effect of chitosan on enzymatic activities and on bioactive compounds was characterized during germination at $25^{\circ}C$ for 7 days to search for a method to produce a germinated black rice. The germination rate was reduced by the addition of lactate and chitosan. The rotting rate was greatly decreased by chitosan, suggesting that the addition of chitosan into a germination solution might be an effective method for controlling fungal contamination during the germination of cereals. The addition of 100 and 200 ppm chitosan increased $\alpha$-amylase activity after 7 days by up to 152 % and 197 %, respectively. The activities of $\beta$-amylase and $\beta$-glucosidase were lower with 200 ppm chitosan than in distilled water and 100 ppm lactate. The amount of total soluble phenolics and total flavonoids decreased rapidly for four days and thereafter remained constant until the seventh day. The antioxidant activity of germinated black rice, in terms of hydrogen-donating activity, increased slowly and did not correspond to the changes of total soluble phenolics and total flavonoids. The amount of phytic acid was reduced by the addition of 200 ppm chitosan compared to distilled water, indicating that chitosan could be used as an elicitor for the increase of phytase activity during the germination of black rice.

The Genetic Variations of NOD2 Are Associated With White Blood Cell Counts

  • Jin, Hyun-Seok;Park, Sangwook
    • Biomedical Science Letters
    • /
    • v.24 no.4
    • /
    • pp.334-340
    • /
    • 2018
  • The cytoplasmic elicitor, nucleotide-binding domain and leucine-rich repeat containing domain receptors (NLRs) is well established molecules in its role in inflammatory response. Among 22 NLR receptors, NOD2 is one of the intensively studied genes of elucidating for the inflammatory bowel disease and Crohn's disease as well. Recent research have accumulated that common genetic mutations in Parkinson's disease (PD) are increasingly related to the susceptibility to Crohn's disease. In this study, with the Korean Genome and Epidemiology Study, we aimed to perform the association between NOD2 polymorphisms and blood cell counts [WBC (white blood cell) count, RBC (red blood cell) count, platelet count], which linked supposedly to cytoplasmic inflammatory responses with clinical specialty. Linear regression analyses were performed, controlling for residential area, sex, and age as covariates. As a results, 12 SNPs from NOD2 gene were significantly associated with WBC counts (Bonferroni correction P-value criteria < 0.05/23=0.00218). In this study, we could ensure an association with NOD2 gene and WBC counts. This is the first report to have relationship between SNPs of NOD2 gene and WBC counts.

Endophytic Trichoderma citrinoviride isolated from mountain-cultivated ginseng (Panax ginseng) has great potential as a biocontrol agent against ginseng pathogens

  • Park, Young-Hwan;Mishra, Ratnesh Chandra;Yoon, Sunkyung;Kim, Hoki;Park, Changho;Seo, Sang-Tae;Bae, Hanhong
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.408-420
    • /
    • 2019
  • Background: Ginseng (Panax ginseng Meyer) is an invaluable medicinal plant containing various bioactive metabolites (e.g., ginsenosides). Owing to its long cultivation period, ginseng is vulnerable to various biotic constraints. Biological control using endophytes is an important alternative to chemical control. Methods: In this study, endophytic Trichoderma citrinoviride PG87, isolated from mountain-cultivated ginseng, was evaluated for biocontrol activity against six major ginseng pathogens. T. citrinoviride exhibited antagonistic activity with mycoparasitism against all ginseng pathogens, with high endo-1,4-${\beta}$-D-glucanase activity. Results: T. citrinoviride inoculation significantly reduced the disease symptoms caused by Botrytis cinerea and Cylindrocarpon destructans and induced ginsenoside biosynthesis in ginseng plants. T. citrinoviride was formulated as dustable powder and granules. The formulated agents also exhibited significant biocontrol activity and induced ginsenosides production in the controlled environment and mountain area. Conclusion: Our results revealed that T. citrinoviride has great potential as a biological control agent and elicitor of ginsenoside production.

The coat protein of Turnip crinkle virus is required a full-length to maintain suppressing activity to RNA silencing but no relation with eliciting resistance by N-terminal region in Arabidopsis.

  • Park, Chang-Won;Feng Qu;Tao Ren;T. Jack Morris
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.76.1-76
    • /
    • 2003
  • The coat protein (CP) of Turnip crinkle virus (TCV) is organized into 3 distinct domains, R domain (RNA-binding) connected by an arm, 5 domain and P domain. We have previously shown that the CP of TCV strongly suppresses RNA silencing, and have mapped N-terminal R domain of which is also the elicitor of resistance response in the Arabidopsis ecotype Di-17 carrying the HRT resistance gene. In order to map the region in the TCV CP that is responsible for silencing suppression, a series of CP mutants were constructed, transformed into Agrobacterium, coinfiltrated either with HC-Pro (the helper component proteinase of tobacco etch potyvirus) known as a suppressor of PTGS or GFP constructs into leaves of Nicotiana benthmiana expressing GFP transgenically. In the presence of HC-Pro, all CP mutants were well protected, accumulating mutant CP mRNAs and their proteins even 5 days post-infiltration (DPI). In the presence of GFP, some mutant constructs which showed the accumulation of CP mutants and GFP mRNAs at early stage but eventually degraded at 5 DPI. Only a mutant which carrying 4 amino acid deletion of R domain was tolerable to maintain suppressing activity, suggesting that the suppressing activity is not directly related with the eliciting activity. A transient assay also revealed that the mutants synthesized their proteins, suggesting that a full length of CP sequences and its intact structure are required to stabilize CP, which suppresses the RNA silencing.

  • PDF

The Arabidopsis AtLEC Gene Encoding a Lectin-like Protein Is Up-Regulated by Multiple Stimuli Including Developmental Signal, Wounding, Jasmonate, Ethylene, and Chitin Elicitor

  • Lyou, Seoung Hyun;Park, Hyon Jin;Jung, Choonkyun;Sohn, Hwang Bae;Lee, Garam;Kim, Chung Ho;Kim, Minkyun;Choi, Yang Do;Cheong, Jong-Joo
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.75-81
    • /
    • 2009
  • The Arabidopsis gene AtLEC (At3g15356) gene encodes a putative 30-kDa protein with a legume lectin-like domain. Likely to classic legume lectin family of genes, AtLEC is expressed in rosette leaves, primary inflorescences, and roots, as observed in Northern blot analysis. The accumulation of AtLEC transcript is induced very rapidly, within 30 min, by chitin, a fungal wall-derived oligosaccharide elictor of the plant defense response. Transgenic Arabidopsis carrying an AtLEC promoter-driven ${\beta}$-glucuronidase (GUS) construct exhibited GUS activity in the leaf veins, secondary inflorescences, carpel heads, and silique receptacles, in which no expression could be seen in Northern blot analysis. This observation suggests that AtLEC expression is induced transiently and locally during developmental processes in the absence of an external signal such as chitin. In addition, mechanically wounded sites showed strong GUS activity, indicating that the AtLEC promoter responds to jasmonate. Indeed, methyl jasmonate and ethylene exposure induced AtLEC expression within 3-6 h. Thus, the gene appears to play a role in the jasmonate-/ethylene-responsive, in addition to the chitin-elicited, defense responses. However, chitin-induced AtLEC expression was also observed in jasmonate-insensitive (coi1) and ethylene-insensitive (etr1-1) Arabidopsis mutants. Thus, it appears that chitin promotes AtLEC expression via a jasmonate- and/or ethylene-independent pathway.

Paromomycin Derived from Streptomyces sp. AG-P 1441 Induces Resistance against Two Major Pathogens of Chili Pepper

  • Balaraju, Kotnala;Kim, Chang-Jin;Park, Dong-Jin;Nam, Ki-Woong;Zhang, Kecheng;Sang, Mee Kyung;Park, Kyungseok
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1542-1550
    • /
    • 2016
  • This is the first report that paromomycin, an antibiotic derived from Streptomyces sp. AG-P 1441 (AG-P 1441), controlled Phytophthora blight and soft rot diseases caused by Phytophthora capsici and Pectobacterium carotovorum, respectively, in chili pepper (Capsicum annum L.). Chili pepper plants treated with paromomycin by foliar spray or soil drenching 7 days prior to inoculation with P. capsici zoospores showed significant (p < 0.05) reduction in disease severity (%) when compared with untreated control plants. The disease severity of Phytophthora blight was recorded as 8% and 50% for foliar spray and soil drench, respectively, at 1.0 ppm of paromomycin, compared with untreated control, where disease severity was 83% and 100% by foliar spray and soil drench, respectively. A greater reduction of soft rot lesion areas per leaf disk was observed in treated plants using paromomycin (1.0 μg/ml) by infiltration or soil drench in comparison with untreated control plants. Paromomycin treatment did not negatively affect the growth of chili pepper. Furthermore, the treatment slightly promoted growth; this growth was supported by increased chlorophyll content in paromomycin-treated chili pepper plants. Additionally, paromomycin likely induced resistance as confirmed by the expression of pathogenesis-related (PR) genes: PR-1, β-1,3-glucanase, chitinase, PR-4, peroxidase, and PR-10, which enhanced plant defense against P. capsici in chili pepper. This finding indicates that AG-P 1441 plays a role in pathogen resistance upon the activation of defense genes, by secretion of the plant resistance elicitor, paromomycin.

Antioxidant Enzyme Responses against Abiotic and Biotic Stresses in Rehmannia glutinosa L. and Glycine max L.

  • Moon, Yu-Ran;Lim, Jeong-Hyun;Park, Myoung-Ryoul;Yu, Chang-Yeon;Chung, Ill-Min;Yang, Deok-Chun;Yun, Song-Joong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.5
    • /
    • pp.360-365
    • /
    • 2004
  • Rehmannia glutinosa shows a high level of resistance to the non-selective herbicide paraquat. To characterize the antioxidant enzyme system of R. glutinosa, we comparatively examined the responses of antioxidant enzymes to UV, wounding and a general elicitor yeast extract in R. glutinosa and soybean. The levels of enzyme activities of the two plant species were drastically different between those per fresh weight (general activity) and per protein (specific activity) bases. The general activities of superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), and glutathione reductase (GR) were lower, but that of ascorbate peroxidase (APX) was higher in R. glutinosa than in soybean. The specific activities of the enzymes, however, were about two- to seven-fold higher in R. glutinosa than in soybean, except that of CAT, which was about 12-fold higher in soybean. The general and specific enzyme activities of R. glutinosa relative to those of soybean showed a consistent increase in responses to the stresses only in SOD. The specific activities of SOD and APX were higher in R. glutinosa in all stress treatments. The results might suggest a relatively higher contribution of SOD and APX to the stress tolerance.

Isolation and Structure Identification of Phytotoxins from Lasiodiplodia theobrorme, the Cause of JAVA Black Rot of Sweet Potato (고구마 검은썩음병균(Lasiodiplodia theobromae)으로부터 식물독소의 분리 및 구조)

  • Lim, Chi-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.1
    • /
    • pp.118-123
    • /
    • 1998
  • Lasiodiplodia theobrorme is a pathogen of Java black rot on sweet potato. This fungus infects the tuberous root during storage after harvest. Invasion of the fungus results in the expansion of necrosis sites into the tuberous roots. The resultant necrotic symptom of the tissue is also induced by application of acetone extract of the fungus growing on potato sucrose agar (PSA) culture. The active principles to induce the necrosis are purified from the acetone extract as follows. After evaporation of hexane-benzene-EtOAc (1:2:1, v/v/v) the extract was fractioned on silica gel column, using a solvent gradient system from n-hexane to EtOAc and then to MeOH. The active fractions were purified with HPLC on Nucleosil 50-5 column by eluting n-hexane to EtOAc. Their structures are established by using spectroscopic techniques and synthesis to 4-hydroxymellein and mellein, respectively. Application of small amount of these compounds induce expansion of the necrotic symptom into the tissue and accumulated ipomeamarone. Conclusively, these compounds acted as phytotoxins (inducing necrosis) and as elicitors (eliciting the phytoalexin).

  • PDF

Induction Effect of Biotic and Chemical Elicitors Treatment for the Increase of Essential Oil Content from Trees (수엽(樹葉) 정유함량에 미치는 생물.화학적)

  • Kang, Ha-Young;Choi, In-Gyu;Lee, Sung-Suk
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.8-12
    • /
    • 2002
  • In order to artificially increase the contents of essential oils from 4 different trees by inducing with elicitors, 5 kinds of chemical elicitors and 4 kinds of biotic elicitors were selected. Before treatment, the contents of essential oils from Japanese Cypress (Chamaecyparis obtusa), Sawara cypress (Chamaecyparis pisifera), Japanese Red Pine (Pinus densiflora), and Korean Pine (Pinus koraiensis) were 2.0, 1.6, 0.4, and 0.7 percent, respectively, and the maximum content of essential oils from all species were reached in July. By most of elicitors, the essential oil content was generally increased after 6 months later, but some of elicitors did not affect the content of essential oil. Finally, the appropriate inducers for artificially increasing the essential oil were respectively selected depending on each species; Schizophyllum commune Fries for Japanese Red Pine and Japanese Cypress, hydrogen peroxide for Korean Pine, and ${\beta}-pyridone$ for Sawara cypress. Especially, hydrogen peroxide and ${\beta}-pyridone$ could be wide spread inducer for all 4 species.

Adventitious Root Cultures of Panax ginseng C.V. Meyer and Ginsenoside Production through Large-Scale Bioreactor System

  • Hahn, Eun-Joo;Kim, Yun-Soo;Yu, Kee-Won;Jeong, Cheol-Seung;Paek, Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • The adventitious root of Panax ginseng C.A. Meyer is regarded as an efficient alternative to cell culture or hairy root culture for biomass production due to its fast growth and stable metabolite production. To determine optimal culture conditions for the bioreactor culture of ginseng roots, experiments have been conducted on physical and chemical factors such as bioreactor type, dissolved oxygen, gas supply, aeration, medium type, macro- and micro-elements, medium supplement during culture period, sucrose concentration, osmotic agents, medium pH and light. Elicitation is a key step to increase ginsenoside accumulation in the adventitious roots but biomass growth is severely inhibited by elicitor treatment. To obtain high ginsenoside content with avoiding biomass decrease, we applied two-stage bioreactor culture system. Ginseng adventitious roots were cultured for 40 days to maximize biomass increase followed by elicitation for 7 days to enhance ginsenoside accumulation. We also experimented on types and concentrations of jasmonate to determine optimal elicitation methods. In this paper, we discussed several factors affecting the root propagation and ginsenoside accumulation. Based on the results obtained from previous experiments we have established large-scale bioreactor system (1 ton-10 ton) for the efficient production of ginseng adventitious roots and bioactive compounds including ginsenoside. Still, experiments are on going in our laboratory to determine other bioactive compounds having effects on diet, high blood pressure, DPPH elimination and increasing memories.