• Title/Summary/Keyword: Elevation data

Search Result 1,484, Processing Time 0.032 seconds

Analysis of Modified Distance-and-Elevation Ratio Method with Different Exponents of Distance and Elevation (거리와 고도의 지수를 구분한 수정거리고도비율법의 분석)

  • Yoo, Ju-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.5
    • /
    • pp.357-365
    • /
    • 2015
  • Both exponents of distance and elevation into distance-and-elevation ratio method for estimating missing rainfall data are expressed as squares together but in this study the two exponents are differently separated and analyzed. We used 326 hourly rainfall events of precipitation data during 10 years of 2004 to 2013 observed at a base station of Pyeongchang and the five neighboring index stations-Bangrim, Suju, Cheongoksan, Jinbu, Yeongwol1-in Han River basin for a case study. As a result, exponent values of distance and elevation appropriate for a topography of the site appear as 3.7 and 0.57 respectively. The exponents of distance and elevation difference need to be applied according to topographical characteristics of site where estimating missing data or interpolation are required.

Landform and Drainage Analysis in Geoje-Do Using GIS (GIS를 이용한 거제도 지형 및 하계 분석)

  • Kim, Woo-Kwan;Lim, Yong-Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.3 no.2
    • /
    • pp.19-35
    • /
    • 1997
  • The purpose of this study is to find out the characteristics of landform in Geoje-Do using GIS and DTED data. The characteristics of landform in Geoje-Do are as follows; First, the height-range of Geoje-Do is $0{\sim}580m$, and the average elevation of it is 124m. Volcanic and granite region is mainly appeared at high elevation-region. But, we can't find out outstanding difference of elevation, according to its geology. The second. the slope-range of Geoje-Do is $0{\sim}52$ degree, and the average slope of it is 17.6 degree. The slope of volcanic and granite area is more steeper than any other region. But the results of analysis of the geology in Geojo-Do, don't show outstanding difference of the slope. The third, the area-rate of the aspect of Geoje-Do is almost same in all direction. And the area-rate of south-west direction is the highest. According to the geology of Geoje-Do, granite is distributed the most widely, and the area of volcanic and granite occupy 60% of entire island's area. According to analysis of influence of geology with elevation, geology has little relationship with elevation. According to analysis of geology and drainage network, streams are inclined to be developed well in Alluvium area. Drainage network is well developed throughout the entire island, except southeast area. The highest order of stream is 4 in 1:25,000 topographic map. The density of stream in Geoje-Do is very high, such as 1.6. The bifurcation-ratio of stream is also higher than 4 in all order. The length-ratio of stream is ranged from 1.24 to 3.25. According to the relationship between order and elevation. order is the greater, elevation is the lower. According to the relationship between order and slope, order is the greater, slope is the gentler. In this study, we use DTED Data, and compare it with topographic map data. According to the comparison, there is a little difference between DTED data and topographic map data. Therefore, to use DTED data in landform analysis, it is required coordinate matching process. This process is very important, and take very long time. Thus, if you use DTED in landform analysis, some processes are required. DTED data can be taken very easily, but its using is not simple. Because coordinate adjust is very hard work.

  • PDF

Missing Pattern of the Tidal Elevation Data in Korean Coasts (한반도 연안 조위자료의 결측 양상)

  • Cho, Hong-Yeon;Ko, Dong-Hui;Jeong, Shin-Taek
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.6
    • /
    • pp.496-501
    • /
    • 2011
  • The missing data patterns of tidal elevation data in Korean coasts are analysed and provided. The missing interval of the data is displayed for all stations using the missing data indicator matrix in order to identify the overall missing pattern. The spatial and temporal missing rates are also estimated. The total missing rate of tidal elevation data is low. However, most of the missing is mainly derived from just 1 or 2 specific stations. The autocorrelation function of the consecutive missing interval data also shows that the missing interval occurs randomly.

Role of unstructured data on water surface elevation prediction with LSTM: case study on Jamsu Bridge, Korea (LSTM 기법을 활용한 수위 예측 알고리즘 개발 시 비정형자료의 역할에 관한 연구: 잠수교 사례)

  • Lee, Seung Yeon;Yoo, Hyung Ju;Lee, Seung Oh
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1195-1204
    • /
    • 2021
  • Recently, local torrential rain have become more frequent and severe due to abnormal climate conditions, causing a surge in human and properties damage including infrastructures along the river. In this study, water surface elevation prediction algorithm was developed using the LSTM (Long Short-term Memory) technique specialized for time series data among Machine Learning to estimate and prevent flooding of the facilities. The study area is Jamsu Bridge, the study period is 6 years (2015~2020) of June, July and August and the water surface elevation of the Jamsu Bridge after 3 hours was predicted. Input data set is composed of the water surface elevation of Jamsu Bridge (EL.m), the amount of discharge from Paldang Dam (m3/s), the tide level of Ganghwa Bridge (cm) and the number of tweets in Seoul. Complementary data were constructed by using not only structured data mainly used in precedent research but also unstructured data constructed through wordcloud, and the role of unstructured data was presented through comparison and analysis of whether or not unstructured data was used. When predicting the water surface elevation of the Jamsu Bridge, the accuracy of prediction was improved and realized that complementary data could be conservative alerts to reduce casualties. In this study, it was concluded that the use of complementary data was relatively effective in providing the user's safety and convenience of riverside infrastructure. In the future, more accurate water surface elevation prediction would be expected through the addition of types of unstructured data or detailed pre-processing of input data.

Effects of Passive Scapular Postural Correction and Active Scapular Posterior Tilt Strategies on Peri-scapular Muscle Activation (수동적 어깨뼈 자세 교정 전략과 능동적 어깨뼈 뒤쪽 기울임 전략이 어깨뼈 주변근육 활성도에 미치는 영향)

  • Kang, Min-Hyeok
    • PNF and Movement
    • /
    • v.20 no.2
    • /
    • pp.215-222
    • /
    • 2022
  • Purpose: The purpose of this study was to compare the effects of passive scapular upward rotation and posterior tilt and active scapular posterior tilt on the muscle activity of the upper trapezius (UT), lower trapezius (LT), and serratus anterior (SA). Methods: Fifteen healthy subjects performed general arm elevation, arm elevation with passive scapular upward rotation and posterior tilt, and arm elevation with active scapular posterior tilt. For active scapular posterior tilt, the subjects were trained in this movement using visual biofeedback and a motion sensor. During each arm elevation condition, electromyography was used to measure the muscle activity of the UT, LT, and SA. The measured data were analyzed using a one-way repeated ANOVA. Results: LT muscle activity was significantly increased during arm elevation with active scapular posterior tilt compared to both general arm elevation and arm elevation with passive scapular upward rotation and posterior tilt (p < 0.05). SA muscle activity was greater during arm elevation with passive scapular upward rotation and posterior tilt than during general arm elevation (p < 0.05). There was no significant change in UT muscle activity among the tested arm elevation conditions (p > 0.05). Conclusion: Performing arm elevation with active scapular posterior tilt and performing arm elevation with passive scapular upward rotation and posterior tilt may be useful strategies for increasing muscle activation of the LT and SA, respectively.

The Determination of Earthwork Volume using LiDAR Data (LiDAR 데이터를 이용한 토공량 산정)

  • Kang Joon-Mook;Yoon Hee-Cheon;Min Kwan-Sik;We Gwang-Jae
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.533-540
    • /
    • 2006
  • In recent years, civil-engineering work is desired the terrain information to be more efficient in earthwork volume calculation. One method for collecting elevation data is LiDAR. Lidar data was used to produce rapidly an accurate digital elevation model of the terrain, compared with the conventional ground surveys, photogrammetty, and remote sensing. Raw Lidar data is combined with GPS positional data to georeference the data sets. Lidar data is edited and processed to generate surface models, elevation models, and contours. Here we can either create a Tin Volume Surface or a Gird Volume Surface. Triangulated Irregular Network(TIN) has complex data structure, but it can describe well terrain surface features. As we have seen, we search the efficiency for earthwork volume calculation using Lidar data. One conclusion we can draw from this study is that Lidar data is more accurate result than digital map in the calculation of earthwork volume.

  • PDF

ORTHORECTIFICATION OF A DIGITAL AERIAL IMAGE USING LIDAR-DRIVEN ELEVATION INFORMATION

  • Yoon, Jong-Suk
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.181-184
    • /
    • 2008
  • The quality of orthoimages mainly depends on the elevation information and exterior orientation (EO) parameters. Since LiDAR data directly provides the elevation information over the earth's surface including buildings and trees, the concept of true orthorectification has been rapidly developed and implemented. If a LiDAR-driven digital surface model (DSM) is used for orthorectification, the displacements caused by trees and buildings are effectively removed when compared with the conventional orthoimages processed with a digital elevation model (DEM). This study sequentially utilized LiDAR data to generate orthorectified digital aerial images. Experimental orthoimages were produced using DTM and DSM. For the preparation of orthorectification, EO components, one of the inputs for orthorectification, were adjusted with the ground control points (GCPs) collected from the LiDAR point data, and the ground points were extracted by a filtering method. The orthoimage generated by DSM corresponded more closely to non-ground LiDAR points than the orthoimage produced by DTM.

  • PDF

Ortho-rectification of a Digital Aerial Image using LiDAR-derived Elevation Model in Forested Area

  • Yoon, Jong-Suk
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.463-471
    • /
    • 2008
  • The quality of orthoimages mainly depends on the elevation information and exterior orientation (EO) parameters. Since LiDAR data directly provides the elevation information over the earth's surface including buildings and trees, the concept of true orthorectification has been rapidly developed and implemented. If a LiDAR-driven digital surface model (DSM) is used for orthorectification, the displacements caused by trees and buildings are effectively removed when compared with the conventional orthoimages processed with a digital elevation model (DEM). This study utilized LiDAR data to generate orthorectified digital aerial images. Experimental orthoimages were produced using digital terrain model (DTM) and DSM. For the preparation of orthorectification, EO components, one of the inputs for orthorectification, were adjusted with the ground control points (GCPs) collected from the LiDAR point data, and the ground points were extracted by a filtering method used in a previous research. The orthoimage generated by DSM corresponded more closely to non-ground LiDAR points than the orthoimage produced by DTM.

Analysis of Topographic Environment for Urban Forest Area in Taejon City Using Landsat - 5 TM and Digital Terrain Elevation Data (Landsat-5 TM과 수치지형데이타를 이용한 도시내 산림의 지형환경 분석 - 대전시를 중심으로 -)

  • 장관순
    • Korean Journal of Environment and Ecology
    • /
    • v.10 no.1
    • /
    • pp.58-65
    • /
    • 1996
  • The environment in urban are becoming worse and forest is being recognized the major part of city by the increase of population and facilities. This study was carried out to analyze topographic environment as the basis for reasonable management and utility of forest situated in Taejon city and its vicinities using Sandst-5 TM and digital terrain elevation data(DTED). Forest area was extracted by Landsat-5 TM data. Distribution of elevation, slope and aspect was derived from digital terrain elevation data. The research area to analyze ropographic environment for urban forest were Bomumsan, Bongsan, Kabhasan, Sikchangsan, and Kyechoksan. Forest, the largest area in Taejon covers 55.1% of totaf area. This is more 5 times than urban area. 70.8% of forest area in Taejon city is located in elevation of lower than 200m and 4.8% of that is located in elevation of upper than 400m. Distribution of elevation is 45.7% of total area for 100m to 200m in Kyechoksan and is 92.4% of total area for lower than 300m in Bomumsan. Elevation of upper than 300m is 20.4% of total area in Kabhasan and is 46.6% of total area in Sikchangsan. The slope of more 20 digree is over 50% of total area in every area except for Bonsan and 35.2% of total area in Sikchangsan and Kahasan than in Bomumsan and Kyechoksan.

  • PDF

Variation Analysis of Elevation within a Rice Paddy Field (수도작 포장의 고저차 분석)

  • Sung J.H.;Jang S.W.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.3 s.116
    • /
    • pp.188-193
    • /
    • 2006
  • Elevation differences within a paddy field relate strongly to plant health, crop homogeneity, and pest control. For precision agriculture (PA), the elevation within a field should be precisely controlled. We analyzed variation in elevation within a rice paddy field over one crop cycle. The study took place in a rectangular plot (100 m x 30 m). Elevations within the a plots was measured by a laser-equipped surveying instrument, that could determine elevations to precisions of I mm. The test field was divided into grids with 30 squares; elevation was measured at the center of each 5 x 10-m grid square. This study measured elevation during nine observation periods from pre-plowing to post-harvest. Descriptive statistics showed the highest elevations after plowing due to soil disturbance. One-way analysis of variance (ANOVA) revealed significant elevation differences before and after plowing and transplanting, although elevations were similar over the period of crop growth. Comparison of pre-plowing and post-harvest data showed differences in elevations, indicating that elevation changes occurred during plowing, rice transplanting, plant growth, and harvesting. In summary, the above statistical analysis indicated that elevation changes occurred due to plowing but not during the plant growth season or due to harvesting.