• Title/Summary/Keyword: Elevation Error

Search Result 253, Processing Time 0.031 seconds

Evaluating Applicability of SRTM DEM (Shuttle Radar Topography Mission Digital Elevation Model) in Hydrologic Analysis: A Case Study of Geum River and Daedong River Areas (수문인자추출에서의 SRTM DEM (Shuttle Radar Topography Mission Digital Elevation Model) 적용성 평가: 대동강 및 금강 지역 사례연구)

  • Her, Younggu;Yoo, Seung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.101-112
    • /
    • 2013
  • Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) offers opportunities to make advances in many research areas including hydrology by providing near-global scale elevation measurements at a uniform resolution. Its wide coverage and complimentary online access especially benefits researchers requiring topographic information of hard-to-access areas. However, SRTM DEM also contains inherent errors, which are subject to propagation with its manipulation into analysis outputs. Sensitivity of hydrologic analysis to the errors has not been fully understood yet. This study investigated their impact on estimation of hydrologic derivatives such as slope, stream network, and watershed boundary using Monte Carlo simulation and spatial moving average techniques. Different amount of the errors and their spatial auto-correlation structure were considered in the study. Two sub-watersheds of Geum and Deadong River areas located in South and North Korea, respectively, were selected as the study areas. The results demonstrated that the spatial presentations of stream networks and watershed boundaries and their length and area estimations could be greatly affected by the SRTM DEM errors, in particular relatively flat areas. In the Deadong River area, artifacts of the SRTM DEM created sinks even after the filling process and then closed drainage basin and short stream lines, which are not the case in the reality. These findings provided an evidence that SRTM DEM alone may not enough to accurately figure out the hydrologic feature of a watershed, suggesting need of local knowledge and complementary data.

Vertical Accuracy Assessment of SRTM Ver 3.0 and ASTER GDEM Ver 2 over Korea (한국에서의 SRTM(Ver 3.0)과 ASTER(Ver 2) 전 세계 수치표고모델 정확도 분석)

  • Park, Junku;Kim, Jungsub;Lee, Giha;Yang, Jae E.
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.6
    • /
    • pp.120-128
    • /
    • 2017
  • The aim of this study is to analyze the accuracy of SRTM Ver 3.0 and ASTER GDEM Ver 2 over Korea. To enable this, accuracy analysis was performed by using precise DEM which was made with multiple aerial image matching and national base map benchmark. The result of this study identified both SRTM and ASTER have different features. The height of the SRTM was found to be higher (3.8 m on average) at lower elevation and lower (8.4 m on average) at higher elevation. In contrast, the ASTER was found to be lower than the actual height at both lower and higher elevation (2.92 m, 4.51 m on average). The cause of this height bias according to the elevation is due to the differences in data acquisition and processing methods of DEM. It was identified however that both SRTM and ASTER were within allowable limits of error. In addition, RMSE of the SRTM was smaller than the ASTER in comparison to benchmark, and also the bias trend both at higher and lower terrain were similar to the precise DEM which was made with multiple aerial image matching. Therefore, the reliability of SRTM can be considered to be higher.

Multi-Image Stereo Method Using DEM Fusion Technique (DEM 융합 기법을 이용한 다중영상스테레오 방법)

  • Lim Sung-Min;Woo Dong-Min
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.4
    • /
    • pp.212-222
    • /
    • 2003
  • The ability to efficiently and robustly recover accurate 3D terrain models from sets of stereoscopic images is important to many civilian and military applications. A stereo matching has been an important tool for reconstructing three dimensional terrain. However, there exist many factors causing stereo matching error, such as occlusion, no feature or repetitive pattern in the correlation window, intensity variation, etc. Among them, occlusion can be only resolved by true multi-image stereo. In this paper, we present multi-image stereo method using DEM fusion as one of efficient and reliable true multi-image methods. Elevations generated by all pairs of images are combined by the fusion process which accepts an accurate elevation and rejects an outlier. We propose three fusion schemes: THD(Thresholding), BPS(Best Pair Selection) and MS(Median Selection). THD averages elevations after rejecting outliers by thresholding, while BPS selects the most reliable elevation. To determine the reliability of a elevation or detect the outlier, we employ the measure of self-consistency. The last scheme, MS, selects the median value of elevations. We test the effectiveness of the proposed methods with a quantitative analysis using simulated images. Experimental results indicate that all three fusion schemes showed much better improvement over the conventional binocular stereo in natural terrain of 29 Palms and urban site of Avenches.

Correlation analysis between rotation parameters and attitude parameters in simulated satellite image

  • Yun, Young-Bo;Park, Jeong-Ho;Yoon, Geun-Won;Park, Jong-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.553-558
    • /
    • 2002
  • Physical sensor model in pushbroom satellite images can be made from sensor modeling by rotation parameters and attitude parameters on the satellite track. These parameters are determined by the information obtained from GPS, INS, or star tracker. Provided from satellite image, an auxiliary data error is connected directly with an error of rotation parameters and attitude parameters. This paper analyzed how obtaining satellite images influenced errors of rotation parameters and attitude parameters. furthermore, for detailed analysis, this paper generated simulated satellite image, which was changed variously by rotation parameters and attitude parameters of satellite sensor model. Simulated satellite image is generated by using high-resolution digital aerial image and DEM (Digital Elevation Model) data. Moreover, this paper determined correlation of rotation parameter and attitude parameters through error analysis of simulated satellite image that was generated by various rotation parameters and attitude parameters.

  • PDF

Coordinates Tracking Algorithm Design (표적 좌표지향 알고리즘 설계)

  • 박주광
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.62-76
    • /
    • 2002
  • This paper describes the design of a Coordinates Tracking algorithm for EOTS and its error analysis. EOTS stabilizes the image sensors such as FLIR, CCD TV camera, LRF/LD, and so on, tracks targets automatically, and provides navigation capability for vehicles. The Coordinates Tracking algorithm calculates the azimuth and the elevation angle of EOTS using the inertial navigation system and the attitude sensors of the vehicle, so that LOS designates the target coordinates which is generated by a Radar or an operator. In the error analysis in this paper, the unexpected behaviors of EOTS that is due to the time delay and deadbeat of the digital signals of the vehicle equipments are anticipated and the countermeasures are suggested. This algorithm is verified and the error analysis is confirmed through simulations. The application of this algorithm to EOTS will improve the operational capability by reducing the time which is required to find the target and support especially the flight in a night time flight and the poor weather condition.

Generation of DEM Using Elevation and Accuracy Assessment of DEM (DEM병합을 통한 수치표고모델의 정확도 평가)

  • 김감래;곽강율;정해진;김명배
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.263-266
    • /
    • 2004
  • We make DEM of the area that elevation value varies rapidly by the aid. This study evaluates the accuracy and workability between the existing DEM making mathod by processing break line and the DEM absorption method by using the program like ARC TIN or AML. The object data of DEM generation is 1/5,000 digital map publicated by NGII and this study uses 100pieces of map as the criteria. We correct the error by Geoconv and generate DEM by using ARC TIN, ARC VIEW. Accuracy Evaluation accomplished by drawing 100 points from 1/5000 digital map.

  • PDF

Rational function model-based image matching for digital elevation model

  • PARK CHOUNG-HWAN
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2005.11a
    • /
    • pp.59-80
    • /
    • 2005
  • This Paper Presents a Rational Function Model (RFM)-based image matching technique for IKONOS satellite imagery. This algorithm adopts the object-space approach and reduces the search space within the confined line-shaped area called the Piecewise Matching Line (PLM). Also, the detailed procedure of generating 3-D surface information using the Rational Function model Coefficients (RFCs) is introduced as an end-user point of view. As a result, the final generated Digital Elevation Model (DEM) using the proposed scheme shows a mean error of 2$\cdot$2 m and RMSE of 3$\cdot$8 m compared with that from 1:5000 digital map.

  • PDF

An Examination of Sediment Discharge Computation Errors Related to Imprecise Factors (부정확한 인자와 관계된 유사량 산정 오류에 대한 검증)

  • 정관수
    • Water for future
    • /
    • v.29 no.3
    • /
    • pp.129-142
    • /
    • 1996
  • This study investigates the magnitude of errors that can be expected in integrating sediment concentration in a vertical, basede on a single-point measurement, because of errors in input data. Potential error sources, including sampler location, water surface elevation, bed elevation, fall velocity, $\beta$ value, and $\kappa$ value were comparatively examined using data from a special study on the Rio Grande Conveyance channel in New Mexico. It is concluded that simple forms of equations for the vertical distribution of velocity and sediment concentration based on a single-point field sample of suspended sediment. The most uncertain point in the computation is related to the Rouse number z in the equation for the vertical concentration distribution of suspended sediment.

  • PDF

3-D Sound Source Localization using Energy-Based Region Selection and TDOA (에너지 기반 영역 선택과 TDOA에 의한 3차원 음원 위치 추정)

  • Yiwere, Mariam;Rhee, Eun Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.294-300
    • /
    • 2017
  • This paper proposes a method for 3-D sound source localization (SSL) using region selection and TDOA. 3-D SSL involves the estimation of an azimuth angle and an elevation angle. With the aim of reducing the computation time, we compare signal energies to select one out of three regions. In the selected region, we compute only one TDOA value for the azimuth angle estimation. Also, to estimate the vertical angle, we choose the higher energy signal from the selected region and pair it up with the elevated microphone's signal for TDOA computation and elevation angle estimation. Our experimental results show that the proposed method achieves average error values of $0.778^{\circ}$ in azimuth and $1.296^{\circ}$ in elevation, which is similar to other methods. The method uses one energy comparison and two TDOA computations therefore, the total processing time is reduced.

Estimates on the Long-term Landform Changes Near Sinduri Beaches (신두리 해빈 장기해안지형변화 탐지 및 추정)

  • Yun, Konghyun;Lee, Chang Kyung;Kim, Gyung Soo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1315-1328
    • /
    • 2022
  • Sinduri beach is a typical sedimentary landform that forms sand dunes due to the influence of the northwest wind in winter. Due to the its large scale and well-developed nature, it has been recognized for conservation value and is currently designated as Natural Monument No. 431, and continuous monitoring is required in terms of the preservation of topographical values. In this study, aerial images, drone images, and drone-based LiDAR data during 36 years were used for long-term topographical change observation of the Sinduri coastal sand dunes located in Taean-gun, Chungcheongnam-do. To implement this, the amount of change in elevation and volume for each period was calculated by applying the difference of Digital Elevation Model (DEM) based on raster calculation using the numerical elevation model generated from the raw data. Also, the amount of change in volume based on probability was calculated using the error propagation law for the intrinsic error of each data source. As a result, it can be seen that from 1986 to 2022, deposition of 35,119 m3 occurred in region of interest A (area: 17,960 m2) and 54,954 m3 of deposition occurred in region of interest B (area: 17,686 m2).