• Title/Summary/Keyword: Elevation Derivative Database

Search Result 1, Processing Time 0.015 seconds

A New Look at the Statistical Method for Remote Sensing of Daily Maximum Air Temperature (위성자료를 이용한 일최고온도 산출의 통계적 접근에 관한 고찰)

  • 변민정;한경수;김영섭
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.2
    • /
    • pp.65-76
    • /
    • 2004
  • This study aims to estimate daily maximum air temperature estimated using satellite-derived surface temperature and Elevation Derivative Database (EDD). The analysis is focused on the establishment of a semi-empirical estimation technique of daily maximum air temperature through the multiple regression analysis. This tests the contribution of EDD in the air temperature estimation when it is added into regression model as an independent variable. The better correlation is shown with the EDD data as compared with the correlation without this data set. In order to provide a progressive estimation technique, we propose and compare three approaches: 1) seasonal estimation non-considering landcover, 2) seasonal estimation considering landcover, and 3) estimation according to landcover type and non-considering season. The last method shows the best fit with the root-mean-square error between 0.56$^{\circ}C$ and 3.14$^{\circ}C$. A cross-validation procedure is performed for third method to valid the estimated values for two major landcover types (cropland and forest). For both landcover types, the validation results show reasonable agreement with estimation results. Therefore it is considered that the estimation technique proposed may be applicable to most parts of South Korea.