• 제목/요약/키워드: Elevated temperature conditions

검색결과 321건 처리시간 0.025초

대기 중 CO2 상승 조건에서 재배되는 콩의 광합성과 생장 반응의 분석 (Photosynthesis and Growth Responses of Soybean (Glycine max Merr.) under Elevated CO2 Conditions)

  • 오순자;고석찬
    • 한국환경과학회지
    • /
    • 제26권5호
    • /
    • pp.601-608
    • /
    • 2017
  • The effects of elevated atmospheric $CO_2$ on growth and photosynthesis of soybean (Glycine max Merr.) were investigated to predict its productivity under elevated $CO_2$ levels in the future. Soybean grown for 6 weeks showed significant increase in vegetative growth, based on plant height, leaf characteristics (area, length, and width), and the SPAD-502 chlorophyll meter value (SPAD value) under elevated $CO_2$ conditions ($800{\mu}mol/mol$) compared to ambient $CO_2$ conditions ($400{\mu}mol/mol$). Under elevated $CO_2$ conditions, the photosynthetic rate (A) increased although photosystem II (PS II) photochemical activity ($F_v/F_m$) decreased. The maximum photosynthetic rate ($A_{max}$) was higher under elevated $CO_2$ conditions than under ambient $CO_2$ conditions, whereas the maximum electron transport rate ($J_{max}$) was lower under elevated $CO_2$ conditions compared to ambient $CO_2$ conditions. The optimal temperature for photosynthesis shifted significantly by approximately $3^{\circ}C$ under the elevated $CO_2$ conditions. With the increase in temperature, the photosynthetic rate increased below the optimal temperature (approximately $30^{\circ}C$) and decreased above the optimal temperature, whereas the dark respiration rate ($R_d$) increased continuously regardless of the optimal temperature. The difference in photosynthetic rate between ambient and elevated $CO_2$ conditions was greatest near the optimal temperature. These results indicate that future increases in $CO_2$ will increase productivity by increasing the photosynthetic rate, although it may cause damage to the PS II reaction center as suggested by decreases in $F_v/F_m$, in soybean.

Elevated Temperature Design of KALIMER Reactor Internals Accounting for Creep and Stress-Rupture Effects

  • Koo, Gyeong-Hoi;Bong Yoo
    • Nuclear Engineering and Technology
    • /
    • 제32권6호
    • /
    • pp.566-594
    • /
    • 2000
  • In most LMFBR(Liquid Metal Fast Breed Reactor) design, the operating temperature is very high and the time-dependent creep and stress-rupture effects become so important in reactor structural design. Therefore, unlike with conventional PWR, the normal operating conditions can be basically dominant design loading because the hold time at elevated temperature condition is so long and enough to result in severe total creep ratcheting strains during total service lifetime. In this paper, elevated temperature design of the conceptually designed baffle annulus regions of KALIMER(Korea Advanced Liquid MEtal Reactor) reactor internal strictures is carried out for normal operating conditions which have the operating temperature 53$0^{\circ}C$ and the total service lifetime of 30 years. For the elevated temperature design of reactor internal structures, the ASME Code Case N-201-4 is used. Using this code, the time-dependent stress limits, the accumulated total inelastic strain during service lifetime, and the creep-fatigue damages are evaluated with the calculation results by the elastic analysis under conservative assumptions. The application procedures of elevated temperature design of the reactor internal structures using ASME Code Case N-201-4 with the elastic analysis method are described step by step in detail. This paper will be useful guide for actual application of elevated temperature design of various reactor types accounting for creep and stress-rupture effects.

  • PDF

Elevated CO2 and Temperature Effects on the Incidence of Four Major Chili Pepper Diseases

  • Shin, Jeong-Wook;Yun, Sung-Chul
    • The Plant Pathology Journal
    • /
    • 제26권2호
    • /
    • pp.178-184
    • /
    • 2010
  • Four major diseases of chili pepper including two fungal diseases, anthracnose (Colletotrichum acutatum) and Phytophthora blight (Phytophthora capsici), and two bacterial diseases, bacterial wilt (Ralstonia solanacearum) and bacterial spot (Xanthomonas campestris pv. vesicatoria), were investigated under future climate-change condition treatments in growth chambers. Treatments with elevated $CO_2$ and temperature were maintained at $720ppm{\pm}20ppm$ $CO_2$ and $30^{\circ}C{\pm}0.5^{\circ}C$, whereas ambient conditions were maintained at $420ppm{\pm}20ppm$ $CO_2$ and $25^{\circ}C{\pm}0.5^{\circ}C$. Pepper seedlings or fruits were infected with each pathogen, and then the disease progress was evaluated in the growth chambers. According to paired t-test analyses, bacterial wilt and spot diseases significantly increased by 24% (p=0.008) and 25% (p=0.016), respectively, with elevated $CO_2$ and temperature conditions. On the other hand, neither Phytophthora blight (p=0.906) nor anthracnose (p=0.125) was statistically significant. The elevated $CO_2$ and temperature accelerated the progress of bacterial wilt by two days and bacterial spot by one day compared to the ambient treatment. Temperature regime studies of the diseases without changes in $CO_2$ confirmed that the accelerated bacterial disease progress was mainly due to the increased temperature rather than the elevated $CO_2$ conditions.

CHARACTERISTICS OF WALL IMPINGEMENT AT ELEVATED TEMPERATURE CONDITIONS ON GDI SPRAY

  • Park, J.;Im, K.S.;Kim, H.;Lai, M.C.
    • International Journal of Automotive Technology
    • /
    • 제5권3호
    • /
    • pp.155-164
    • /
    • 2004
  • The direct injection gasoline spray-wall interaction was characterized inside a heated pressurized chamber using various visualization techniques, including high-speed laser-sheet macroscopic and microscopic movies up to 25,000 frames per second, shadowgraph, and double-spark particle image velocimetry. Two hollow cone high-pressure swirl injectors having different cone angles were used to inject gasoline onto a heated plate at two different impingement angles. Based on the visualization results, the overall transient spray impingement structure, fuel film formation, and preliminary droplet size and velocity were analyzed. The results show that upward spray vortex inside the spray is more obvious at elevated temperature condition, particularly for the wide-cone-angle injector, due to the vaporization of small droplets and decreased air density. Film build-up on the surface is clearly observed at both ambient and elevated temperature, especially for narrow cone spray. Vapor phase appears at both ambient and elevated temperature conditions, particularly in the toroidal vortex and impingement plume. More rapid impingement and faster horizontal spread after impingement are observed for elevated temperature conditions. Droplet rebounding and film break-up are clearly observed. Post-impingement droplets are significantly smaller than pre-impingement droplets with a more horizontal velocity component regardless of the wall temperature and impingement angle condition.

Ecophysiological responses of Quercus gilva, endangered species and Q. glauca to long-term exposure to elevated CO2 concentration and temperature

  • Kim, Hae-Ran;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • 제35권3호
    • /
    • pp.203-212
    • /
    • 2012
  • The physiological effects of elevated $CO_2$ concentration and temperature were examined for Quercus gilva and Q. glauca grown under control (ambient $CO_2$ and temperature) and treatment (elevated $CO_2$ and temperature) conditions for 39 months. The objective of the study was to measure the long-term responses, in physiological parameters, of two oaks species exposed to elevated $CO_2$ and temperature. The photosynthetic rate of Q. gilva was found to be decreased, but that of Q. glauca was not significantly affected, after long-term exposure to elevated $CO_2$ and temperature. Stomatal conductance of Q. glauca was reduced by 21.7%, but that of Q. gilva was not significantly affected, by long-term exposure to $CO_2$ and temperature. However, the transpiration rate of the two oak species decreased. Water use efficiency of Q. gilva was not significantly affected by elevated $CO_2$ and temperature, while that of Q. glauca was increased by 56.6%. The leaves of Q. gilva grown under treatment conditions had an increased C:N ratio due to their reduced nitrogen content, while those of Q. glauca were not significantly affected by long-term exposure to elevated $CO_2$ and temperature. These results suggest that the long-term responses to elevated $CO_2$ and temperature between Q. gilva and Q. glauca are different, and that Q. gilva, the endangered species, is more sensitive to elevated $CO_2$ and temperature than Q. glauca.

Effects of future climate conditions on photosynthesis and biochemical component of Ulva pertusa (Chlorophyta)

  • Kang, Eun Ju;Kim, Kwang Young
    • ALGAE
    • /
    • 제31권1호
    • /
    • pp.49-59
    • /
    • 2016
  • Ulva pertusa, a common bloom-forming green alga, was used as a model system to examine the effects of elevated carbon dioxide (CO2) and temperature on growth and photosynthetic performance. To do this, U. pertusa was grown under four temperature and CO2 conditions; ambient CO2 (400 μatm) and temperature (16℃) (i.e., present), elevated temperature only (19℃) (ET; i.e., warming), elevated CO2 only (1,000 μatm) (EC; i.e., acidification), and elevated temperature and CO2 (ET and EC; i.e., greenhouse), and its steady state photosynthetic performance evaluated. Maximum gross photosynthetic rates (GPmax) were highest under EC conditions and lowest under ET conditions. Further, ET conditions resulted in decreased rate of dark respiration (Rd), but growth of U. pertusa was higher under ET conditions than under ambient temperature conditions. In order to evaluate external carbonic anhydrase (eCA) activity, photosynthesis was measured at 70 μmol photons m−2 s−1 in the presence or absence of the eCA inhibitor acetazolamide (AZ), which inhibited photosynthetic rates in all treatments, indicating eCA activity. However, while AZ reduced U. pertusa photosynthesis in all treatments, this reduction was lower under ambient CO2 conditions (both present and warming) compared to EC conditions (both acidification and greenhouse). Moreover, Chlorophyll a and glucose contents in U. pertusa tissues declined under ET conditions (both warming and greenhouse) in conjunction with reduced GPmax and Rd. Overall, our results indicate that the interaction of EC and ET would offset each other’s impacts on photosynthesis and biochemical composition as related to carbon balance of U. pertusa.

Heat sensitivity on physiological and biochemical traits in chickpea (Cicer arietinum)

  • Jain, Amit Kumar
    • Advances in environmental research
    • /
    • 제3권4호
    • /
    • pp.307-319
    • /
    • 2014
  • Four chickpea cultivars viz. kabuli (Pusa 1088 and Pusa 1053) and desi (Pusa 1103 and Pusa 547) differing in sensitivity to high temperature conditions were analyzed in earthern pot (30 cm) at different stages of growth and development in the year of 2010 and 2011. Pusa-1053 (kabuli type) showed maximum photosynthetic rate and least by Pusa-547 (desi type), whereas maximum cell membrane thermostability were recorded in Pusa-1103 and minimum in Pusa-1088. Among the treatments, the plants grown under elevated temperature conditions had produced 13.01% more significant data in comparison to plants grown under continuous natural conditions. Stomatal conductance were reduced 44.25% under elevated temperature conditions than natural conditions, whereas 35.56%, when plants grown under initially natural conditions upto 30DAS, then 30-60DAS elevated temperature and finally shifted to natural conditions till harvest. In case of Pusa-1103, stomatal conductance was maximum as compared to rest of 2.7% from Pusa-1053, 8.9% from Pusa-1088, and 10.3% in Pusa-547 throughout the study. Plants grown under continuous elevated temperature conditions had produced 15.30% and 15.32% more significant membrane thermostability index in comparison to continuous natural conditions at vegetative stage and 19.40% and 18.44% at flowering stage, while the better response was recorded at pod formation stage. Pusa-1053 had given 2.8% more membrane thermostability index than Pusa-1088 and Pusa-1103 had given 1.6% more membrane thermostability index than Pusa-547 in the present study. The membrane disruption caused by high temperature may alter water ion and inorganic solutes movement, photosynthesis and respiration. Thus, thermostability of the cell membrane depends on the degree of the electrolyte leakage.

마그네슘 합금 판재의 온간 딥드로잉 해석 (Analysis of warm Deep Drawing of Magnesium Alloy Sheet)

  • 이명한;김헌영;김형종;오수익
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.294-297
    • /
    • 2007
  • Due to their low densities and high specific strength and stiffness, magnesium alloy sheets are very attractive lightweight materials for automotive and electrical products. However, the magnesium alloy sheets are usually formed at elevated temperature because of their poor formability at room temperature. To use of the magnesium alloy sheets for an industrial, their mechanical properties at elevated temperature and appropriate forming process conditions have to be developed. In this study, non-isothermal simulations of a square cup drawing from magnesium alloy sheets have been conducted to evaluate a proper forming process conditions such as the tool temperature, the tool shoulder radius, friction between the blank and the tools. According to this study, appropriate forming process conditions of square cup drawing at elevated temperature from magnesium alloy sheets are suggested.

  • PDF

마그네슘 합금 판재의 온간 딥드로잉 공정의 성형해석 (Forming Analysis for Warm Deep Drawing Process of Magnesium Alloy Sheet)

  • 이명한;김헌영;김형종;김흥규;오수익
    • 소성∙가공
    • /
    • 제16권5호통권95호
    • /
    • pp.401-405
    • /
    • 2007
  • Due to the low densities and high specific strength and stiffness, magnesium alloy sheets are very attractive lightweight materials for automotive and electrical products. However, the magnesium alloy sheets should be usually formed at elevated temperature because of their poor formability at room temperature. For the use of the magnesium alloy sheets for an industrial, their mechanical properties at elevated temperature and appropriate forming process conditions have to be developed. In this study, non-isothermal simulation of a square cup drawing of magnesium alloy sheets have been conducted to evaluate a proper forming process conditions such as the tool temperature, the tool shoulder radius, friction between the blank and the tools. According to this study, appropriate forming process conditions of square cup drawing at elevated temperature from magnesium alloy sheets are suggested.

Growth and Quality Characteristics in Response to Elevated Temperature during the Growing Season of Korean Bread Wheat

  • Chuloh Cho;Han-Yong Jeong;Yulim Kim;Jinhee Park;Chon-Sik Kang;Jong-Min Ko;Ji-Young Shon
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.124-124
    • /
    • 2022
  • Wheat (Triticum aestivum L.) is the major staple foods and is in increasing demand in the world. The elevated temperature due to changes in climate and environmental conditions is a major factor affecting wheat development and grain quality. The optimal temperature range for winter wheat is between 15~25℃, it is necessary to study the physiological characteristic of wheat according to the elevated temperature. This study presents the effect of elevated temperature on the yield and quality of two Korean bread wheat (Baekkang and Jokyoung) in a temperature gradient tunnel (TGT). Two bread wheat cultivars were grown in TGT at four different temperature conditions, i.e. TO control (near ambient temperature), T1 control+1℃, T2 control+2℃, T3 control+3℃. The period from sowing to heading stage has accelerated, while the growth properties including culm length, spike length and number of spike, have not changed by elevated temperature. On the contrary, the number of grains per spike and grain yield was reduced under T3 condition compared with that of control condition. In addition, the. The grain filling rate and grain maturity also accelerated by elevated temperature (T3). The elevating temperature has led to increasing protein and gluten contents, whereas causing reduction of total starch contents. These results are consistent with reduced expression of starch synthesis genes and increased gliadin synthesis or gluten metabolism genes during late grain filling period. Taken together, our results suggest that the elevated temperature (T3) leads to reduction in grain yield regulating number of grains/spike, whereas increasing the gluten content by regulating the expression of starch and gliadin-related genes or gluten metabolism process genes expression. Our results should be provide a useful physiological information for the heat stress response of wheat.

  • PDF