Browse > Article
http://dx.doi.org/10.4490/algae.2016.31.3.9

Effects of future climate conditions on photosynthesis and biochemical component of Ulva pertusa (Chlorophyta)  

Kang, Eun Ju (Department of Oceanography, Chonnam National University)
Kim, Kwang Young (Department of Oceanography, Chonnam National University)
Publication Information
ALGAE / v.31, no.1, 2016 , pp. 49-59 More about this Journal
Abstract
Ulva pertusa, a common bloom-forming green alga, was used as a model system to examine the effects of elevated carbon dioxide (CO2) and temperature on growth and photosynthetic performance. To do this, U. pertusa was grown under four temperature and CO2 conditions; ambient CO2 (400 μatm) and temperature (16℃) (i.e., present), elevated temperature only (19℃) (ET; i.e., warming), elevated CO2 only (1,000 μatm) (EC; i.e., acidification), and elevated temperature and CO2 (ET and EC; i.e., greenhouse), and its steady state photosynthetic performance evaluated. Maximum gross photosynthetic rates (GPmax) were highest under EC conditions and lowest under ET conditions. Further, ET conditions resulted in decreased rate of dark respiration (Rd), but growth of U. pertusa was higher under ET conditions than under ambient temperature conditions. In order to evaluate external carbonic anhydrase (eCA) activity, photosynthesis was measured at 70 μmol photons m−2 s−1 in the presence or absence of the eCA inhibitor acetazolamide (AZ), which inhibited photosynthetic rates in all treatments, indicating eCA activity. However, while AZ reduced U. pertusa photosynthesis in all treatments, this reduction was lower under ambient CO2 conditions (both present and warming) compared to EC conditions (both acidification and greenhouse). Moreover, Chlorophyll a and glucose contents in U. pertusa tissues declined under ET conditions (both warming and greenhouse) in conjunction with reduced GPmax and Rd. Overall, our results indicate that the interaction of EC and ET would offset each other’s impacts on photosynthesis and biochemical composition as related to carbon balance of U. pertusa.
Keywords
acidification; CO2; greenhouse; photosynthesis; temperature; Ulva pertusa; warming;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Israel, A. & Hophy, M. 2002. Growth, photosynthetic properties and Rubisco activities and amounts of marine macroalgae grown under current and elevated seawater CO2 concentrations. Glob. Chang. Biol. 8:831-840.   DOI
2 Johnston, A. M., Maberly, S. C. & Raven, J. A. 1992. The acquisition of inorganic carbon for four red macroalgae. Oecologia 92:317-326.   DOI
3 Kang, E. J., Kim, J. -H., Kim, K. & Kim, K. Y. 2016. Adaptations of a green tide forming Ulva linza (Ulvophyceae, Chlorophyta) to selected salinity and nutrients conditions mimicking representative environments in the Yellow Sea. Phycologia 55:210-218.   DOI
4 Kim, J. -H., Kang, E. J., Park, M. G., Lee, B. -G. & Kim, K. Y. 2011. Effects of temperature and irradiance on photosynthesis and growth of a green-tide-forming species (Ulva linza) in the Yellow Sea. J. Appl. Phycol. 23:421-432.   DOI
5 Kim, J. -H., Kim, K. Y., Kang, E. J., Lee, K., Kim, J. -M., Park, K. -T., Shin, K., Hyun, B. & Jeong, H. J. 2013. Enhancement of photosynthetic carbon assimilation efficiency by phytoplankton in the future coastal ocean. Biogeosciences 10:7525-7535.   DOI
6 Kim, J. -M., Shin, K., Lee, K. & Park, B. -K. 2008. In situ ecosystem-based carbon dioxide perturbation experiments: design and performance evaluation of a mesocosm facility. Limnol. Oceanogr. Methods 6:208-217.   DOI
7 Kübler, J. E. & Davison, I. R. 1995. Thermal acclimation of light-use characteristics of Chondrus crispus (Rhodophyta). Eur. J. Phycol. 30:189-195.   DOI
8 Kim, K. Y., Choi, T. S., Kim, J. H., Han, T., Shin, H. W. & Garbary, D. J. 2004. Physiological ecology and seasonality of Ulva pertusa on a temperate rocky shore. Phycologia 43:483-492.   DOI
9 Kim, K. Y. & Lee, I. K. 1996. The germling growth of Enteromorpha intestinalis (Chlorophyta) in laboratory culture under different combinations of irradiance and salinity and temperature and salinity. Phycologia 35:327-331.   DOI
10 Koch, M., Bowes, G., Ross, C. & Zhang, X. -H. 2013. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Global Chang. Biol. 19:103-132.   DOI
11 Lewis, E. & Wallace, D. W. R. 1998. CO2SYS-Program developed for the CO2 system calculations. Report ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge, TN, 21 pp.
12 Lüning, K. 1990. Seaweeds: their environment, biogeography and ecophysiology. Wiley, New York, 544 pp.
13 Menzel, D. W. & Corwin, N. 1965. The measurement of total phosphorus in seawater based on the liberation of organically bound fractions by persulfate oxidation. Limnol. Oceanogr. 10:280-282.   DOI
14 Mercado, J. M., Figueroa, F. L., Niell, F. X. & Axelsson, L. 1997. A new method for estimating external carbonic anhydrase activity in macroalgae. J. Phycol. 33:999-1006.   DOI
15 Murase, N., Maegawa, M., Matsui, T., Ohgai, M., Katayama, N., Saitoh, M. & Yokohama, Y. 1993. Growth and photosynthesis termperature characteristics of the sterile Ulva pertusa. Nippon Suisan Gakkaish 60:625-630.
16 Raven, J. A. 1997. Inorganic carbon acquisition by marine autotrophs. Adv. Bot. Res. 27:85-209.   DOI
17 Olabarria, C., Arenas, F., Viejo, R. M., Gestoso, I., Vaz-Pinto, F., Incera, M., Rubal, M., Cacabelos, E., Veiga, P. & Sobrino, C. 2013. Response of macroalgal assemblages from rock-pools to climate change: effects of persistent increase in temperature and CO2. Oikos 122:1065-1079.   DOI
18 Rodolfo-Metalpa, R., Houlbrèque, F., Tambutté, É., Boisson, F., Baggini, C., Patti, F. P., Jeffree, R., Fine, M., Foggo, A., Gattuso, J. -P. & Hall-Spencer, J. M. 2011. Coral and mollusk resistance to ocean acidification adversely affected by warming. Nat. Clim. Chang. 1:308-312.   DOI
19 Platt, T., Gallegos, C. L. & Harrison, W. G. 1980. Photoinhibition of photosynthesis in natural assemblage of marine phytoplankton. J. Mar. Res. 38:687-701.
20 Ralph, P. J. & Gademann, R. 2005. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat. Bot. 82:222-237.   DOI
21 Schaum, E., Rost, B., Millar, A. J. & Collins, S. 2013. Variation in plastic responses of a globally distributed picoplankton species to ocean acidification. Nat. Clim. Chang. 3:298-302.   DOI
22 Taylor, R., Fletcher, R. L. & Raven, J. A. 2001. Preliminary studies on the growth of selected ‘green-tide’ algae in laboratory culture: effects of irradiance, temperature, salinity and nutrients on growth rate. Bot. Mar. 44:327-336.
23 Valiela, I., McClelland, J., Hauxwell, J., Behr, P. J., Hersh, D. & Foreman, K. 1997. Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnol. Oceanogr. 42:1105-1118.   DOI
24 Xu, J. & Gao, K. 2012. Future CO2-induced ocean acidification mediates the physiological performance of a green tide alga. Plant Physiol. 160:1762-1769.   DOI
25 Vona, V., Rigano, V. D. M., Lobosco, O., Carfagna, S., Esposito, S. & Rigano, C. 2004. Temperature responses of growth, photosynthesis, respiration and NADH: nitrate reductase in cryophilic and mesophilic algae. New Phytol. 163:325-331.   DOI
26 Zimmerman, R. C., Kohr, D. G., Steller, D. L. & Alberte, R. S. 1997. Impacts of CO2 enrichment on productivity and light requirements of eelgrass. Plant Physiol. 115:599-607.   DOI
27 Webber, A. N., Nie, G. -Y. & Long, S. P. 1994. Acclimation of photosynthetic proteins to rising atmospheric CO2. Photosynth. Res. 39:413-425.   DOI
28 Wood, T. M. & Bhat, K. M. 1988. Methods for measuring cellulase activities. Methods Enzymol. 160:87-112.   DOI
29 Young, A. J., Collins, J. C. & Russell, G. 1987. Ecotypic variation in the osmotic responses of Enteromorpha intestinalis (L.) Link. J. Exp. Bot. 38:1309-1324.   DOI
30 Zou, D. & Gao, K. 2013. Thermal acclimation of respiration and photosynthesis in the marine macroalga Gracilaria lemaneiformis (Gracilariales, Rhodophyta). J. Phycol. 49:61-68.   DOI
31 Zou, D. & Gao, K. 2014. The photosynthetic and respiratory responses to temperature and nitrogen supply in the marine green macroalga Ulva conglobata (Chlorophyta). Phycologia 53:86-94.   DOI
32 Zou, D., Gao, K. & Luo, H. 2011. Short- and long-term effects of elevated CO2 on photosynthesis and respiration in the marine macroalga Hizikia fusiformis (Sargassaceae, Phaeophyta) grown at low and high N supplies. J. Phycol. 47:87-97.   DOI
33 Choi, T. S. 2003. Ecophysiological characteristics of green macroalga Ulva pertusa L. from eelgrass habitats. Ph.D. dissertation, Chonnam National University, Gwangju, Korea, pp. 89-118.
34 Andria, J. R., Vergara, J. J. & Perez-Llorens, J. 1999. Biochemical responses and photosynthetic performance of Gracilaria sp. (Rhodophyta) from Cádiz, Spain, cultured under different inorganic carbon and nitrogen levels. Eur. J. Phycol. 34:497-504.   DOI
35 Atkin, O. K., Edwards, E. J. & Loveys, B. R. 2000. Response of root respiration to changes in temperature and its relevance to global warming. New Phytol. 147:141-154.   DOI
36 Atkin, O. K. & Tjoelker, M. G. 2003. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci. 8:343-351.   DOI
37 Björk, M., Haglund, K., Ramazanov, Z. & Pedersén, M. 1993. Inducible mechanisms for HCO3- utilization and repression of photorespiration in protoplasts and thalli of three species of Ulva (Chlorophyta). J. Phycol. 29:166-173.   DOI
38 Connell, S. D. & Russell, B. D. 2010. The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proc. R. Soc. B 277:1409-1415.   DOI
39 Brading, P., Warner, M. E., Davey, P., Smith, D. J., Achterberg, E. P. & Suggett, D. J. 2011. Differential effects of ocean acidification on growth and photosynthesis among phylotypes of Symbiodinium (Dinophyceae). Limnol. Oceanogr. 56:927-938.   DOI
40 Cheng, W., Sims, D. A., Luo, Y., Coleman, J. S. & Johnson, D. W. 2000. Photosynthesis, respiration and net primary production of sunflower stands in ambient and elevated atmospheric CO2 concentrations: an invariant NPP:GPP ratio. Glob. Chang. Biol. 6:931-941.   DOI
41 Dale, B., Edwards, M. & Reid, P. C. 2006. Climate change and harmful algal blooms. In Granéli, E. & Turner, J. T. (Eds.) Ecology of Harmful Algae. Springer, Berlin, pp. 367-378.
42 Davison, I. R. 1991. Environmental effects on algal photosynthesis: temperature. J. Phycol. 27:2-8.   DOI
43 Davison, I. R., Greene, R. M. & Podolak, E. J. 1991. Temperature acclimation of respiration and photosynthesis in the brown alga Laminaria saccharina. Mar. Biol. 110:449-454.   DOI
44 Falkowski, P. G. & Raven, J. A. 2007. Aquatic photosynthesis. 2nd ed. Princeton University Press, Princeton, NJ, pp. 306-310.
45 de Casabianca, M. -L., Barthelemy, N., Serrano, O. & Sfriso, A. 2002. Growth rate of Ulva rigida in different Mediterranean eutrophicated sites. Bioresour. Technol. 82:27-31.   DOI
46 Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. 2009. Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci. 1:169-192.   DOI
47 Fu, F. -X., Warner, M. E., Zhan, Y., Feng, Y. & Hutchins, D. A. 2007. Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (cyanobacteria). J. Phycol. 43:485-496.   DOI
48 Engel, A., Zondervan, I., Aerts, K., Beaufort, L., Benthien, A., Chou, L., Delille, B., Gattuso, J. -P., Harlay, J., Heemann, C., Hoffmann, L., Jacquet, S., Nejstgaard, J., Pizay, M. -D., Rochelle-Newall, E., Schneider, U., Terbrueggen, A. & Riebesell, U. 2005. Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments. Limnol. Oceanogr. 50:493-507.   DOI
49 Figueroa, F. L., Israel, A., Neori, A., Martínez, B., Malta, E. -J., Ang, P. Jr., Inken, S., Marquardt, R. & Korbee, N. 2009. Effects of nutrient supply on photosynthesis and pigmentation in Ulva lactuca (Chorophyta): responses to short-term stress. Aquat. Biol. 7:173-183.   DOI
50 Floreto, E. A. T., Hirata, H., Ando, S. & Yamasaki, S. 1993. Effects of temperature, light intensity, salinity and source of nitrogen on the growth, total lipid and fatty acid composition of Ulva pertusa Kjellman (Chlorophyta). Bot. Mar. 36:149-158.
51 Giannotti, A. L. & McGlathery, K. J. 2001. Consumption of Ulva lactuca (Chlorophyta) by the omnivorous mud snail Ilyanassa obsoleta (Say). J. Phycol. 37:209-215.   DOI
52 Gao, K., Helbling, E. W., Hӓder, D. -P. & Hutchins, D. A. 2012. Responses of marine primary producers to interactions between ocean acidification, solar radiation, and warming. Mar. Ecol. Prog. Ser. 470:167-189.   DOI
53 García-Sánchez, M. J., Fernández, J. A. & Niell, X. 1994. Effect of inorganic carbon supply on the photosynthetic physiology of Gracilaria tenuistipitata. Planta 194:55-61.
54 Hansen, J., Nazarenko, L., Ruedy, R., Sato, M., Willis, J., Del Genio, A., Koch, D., Lacis, A., Lo, K., Menon, S., Novakov, T., Perlwitz, J., Russell, G., Schmidt, G. A. & Tausnev, N. 2005. Earth’s energy imbalance: confirmation and implications. Science 308:1431-1435.   DOI
55 Gessner, F. 1970. Temperature: plants. In Kinne, O. (Ed.) Marine Ecology: A Comprehensive, Integrated Treatise on Life in Oceans and Coastal Waters. Vol. 1. Environmental Factors. Wiley Interscience, New York, pp. 363-406.
56 Gordillo, F. J. L., Figueroa, F. L. & Niell, F. X. 2003. Photon- and carbon-use efficiency in Ulva rigida at different CO2 and N levels. Planta 218:315-322.   DOI
57 Gordillo, F. J. L., Niell, F. X. & Figueroa, F. L. 2001. Non-photosynthetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta). Planta 213:64-70.   DOI
58 Innes, D. J. 1988. Genetic differentiation in the intertidal zone in populations of the alga Enteromorpha linza (Ulvales: Chlorophyta). Mar. Biol. 97:9-16.   DOI
59 Inskeep, W. P. & Bloom, P. R. 1985. Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80% acetone. Plant Physiol. 77:483-485.   DOI
60 Kang, E. J., Kim, J. -H., Kim, K., Choi, H. -G. & Kim, K. Y. 2014. Re-evaluation of green tide-forming species in the Yellow Sea. Algae 29:267-277.   DOI
61 IPCC 2007. Summary for policymakers. In Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. & Miller, H. L. (Eds.) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 1-18.