• 제목/요약/키워드: Elevated plus-maze

검색결과 111건 처리시간 0.031초

Anxiolytic effect of Korean Red Ginseng through upregulation of serotonin and GABA transmission and BDNF expression in immobilized mice

  • Bui, Bich Phuong;Nguyen, Phuong Linh;Do, Ha Thi Thu;Cho, Jungsook
    • Journal of Ginseng Research
    • /
    • 제46권6호
    • /
    • pp.819-829
    • /
    • 2022
  • Background: Anxiolytic properties of Korean Red Ginseng (KRG) have been previously reported. However, the exact mechanism(s) of action remains to be elucidated. The present study investigated the effect of KRG on immobilization-induced anxiety-like behaviors in mice and explored the involvement of the serotonin and GABA systems and BDNF in the anxiolytic action. Methods: Mice were orally administered with KRG (200 mg/kg/day) for 4 weeks and immobilized once daily for 2 h. p-Chlorophenylalanine (p-CPA) was intraperitoneally injected on day 22-28, and flumazenil or bicuculline was injected on day 25-28. After behavioral evaluations, brains were dissected for biochemical analyses. Results: KRG improved immobilization-induced anxiety-like behaviors in mice, as assessed by the elevated plus maze (EPM) and marble burying tests (MBT). The anxiolytic effect of KRG was comparable to that of fluoxetine, a reference drug clinically used for anxiety disorders. A serotonin synthesis inhibitor, p-CPA, blocked the effect of KRG in the EPM and MBT, indicating the requirement of serotonin synthesis for anxiolytic action. In addition, the anxiolytic effect of KRG was inhibited by bicuculline (a GABAA antagonist) in MBT, implying the involvement of GABA transmission. Western blotting analyses revealed that KRG upregulated the expression of tryptophan hydroxylase and GABAA receptor in the brain, which was blocked by p-CPA. Enhanced BDNF expression by KRG in the hippocampus was also indicated to mediate the anxiolytic action of KRG in immobilized mice. Conclusion: KRG exhibited the anxiolytic effect in immobilized mice by multiple mechanisms of action, involving enhanced serotonin and GABA transmissions and BDNF expression.

Maternal separation in mice leads to anxiety-like/aggressive behavior and increases immunoreactivity for glutamic acid decarboxylase and parvalbumin in the adolescence ventral hippocampus

  • Eu-Gene Kim;Wonseok Chang;SangYep Shin;Anjana Silwal Adhikari;Geun Hee Seol;Dae-Yong Song;Sun Seek Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권1호
    • /
    • pp.113-125
    • /
    • 2023
  • It has been reported that stressful events in early life influence behavior in adulthood and are associated with different psychiatric disorders, such as major depression, post-traumatic stress disorder, bipolar disorder, and anxiety disorder. Maternal separation (MS) is a representative animal model for reproducing childhood stress. It is used as an animal model for depression, and has well-known effects, such as increasing anxiety behavior and causing abnormalities in the hypothalamic-pituitary-adrenal (HPA) axis. This study investigated the effect of MS on anxiety or aggression-like behavior and the number of GABAergic neurons in the hippocampus. Mice were separated from their dams for four hours per day for 19 d from postnatal day two. Elevated plus maze (EPM) test, resident-intruder (RI) test, and counted glutamic acid decarboxylase 67 (GAD67) or parvalbumin (PV) positive cells in the hippocampus were executed using immunohistochemistry. The maternal segregation group exhibited increased anxiety and aggression in the EPM test and the RI test. GAD67-positive neurons were increased in the hippocampal regions we observed: dentate gyrus (DG), CA3, CA1, subiculum, presubiculum, and parasubiculum. PV-positive neurons were increased in the DG, CA3, presubiculum, and parasubiculum. Consistent with behavioral changes, corticosterone was increased in the MS group, suggesting that the behavioral changes induced by MS were expressed through the effect on the HPA axis. Altogether, MS alters anxiety and aggression levels, possibly through alteration of cytoarchitecture and output of the ventral hippocampus that induces the dysfunction of the HPA axis.

Effect of fermented red ginseng on gut microbiota dysbiosis- or immobilization stress-induced anxiety, depression, and colitis in mice

  • Yoon-Jung Shin;Dong-Yun Lee;Joo Yun Kim;Keon Heo;Jae-Jung Shim;Jung-Lyoul Lee;Dong-Hyun Kim
    • Journal of Ginseng Research
    • /
    • 제47권2호
    • /
    • pp.255-264
    • /
    • 2023
  • Background: Red ginseng (RG) alleviates psychiatric disorders. Fermented red ginseng (fRG) alleviates stress-induced gut inflammation. Gut dysbiosis causes psychiatric disorders with gut inflammation. To understand the gut microbiota-mediated action mechanism of RG and fRG against anxiety/depression (AD), we investigated the effects of RG, fRG, ginsenoside Rd, and 20(S)-β-D-glucopyranosyl protopanaxadiol (CK) on gut microbiota dysbiosis-induced AD and colitis in mice. Methods: Mice with AD and colitis were prepared by exposing to immobilization stress (IS) or transplanting the feces of patients with ulcerative colitis and depression (UCDF). AD-like behaviors were measured in the elevated plus maze, light/dark transition, forced swimming, and tail suspension tests. Results: Oral gavage of UCDF increased AD-like behaviors and induced neuroinflammation, gastrointestinal inflammation, and gut microbiota fluctuation in mice. Oral administration of fRG or RG treatment reduced UCDF-induced AD-like behaviors, hippocampal and hypothalamic IL-6 expression, and blood corticosterone level, whereas UCDF-suppressed hippocampal BDNF+NeuN+ cell population and dopamine and hypothalamic serotonin levels increased. Furthermore, their treatments suppressed UCDF-induced colonic inflammation and partially restored UCDF-induced gut microbiota fluctuation. Oral administration of fRG, RG, Rd, or CK also decreased IS-induced AD-like behaviors, blood IL-6 and corticosterone and colonic IL-6 and TNF-α levels, and gut dysbiosis, while IS-suppressed hypothalamic dopamine and serotonin levels increased. Conclusion: Oral gavage of UCDF caused AD, neuroinflammation, and gastrointestinal inflammation in mice. fRG mitigated AD and colitis in UCDF-exposed mice by the regulation of the microbiota-gut-brain axis and IS-exposed mice by the regulation of the hypothalamic-pituitary-adrenal axis.

Korean Red Ginseng extract ameliorates demyelination by inhibiting infiltration and activation of immune cells in cuprizone-administrated mice

  • Min Jung Lee;Jong Hee Choi;Tae Woo Kwon;Hyo-Sung Jo;Yujeong Ha;Seung-Yeol Nah;Ik-Hyun Cho
    • Journal of Ginseng Research
    • /
    • 제47권5호
    • /
    • pp.672-680
    • /
    • 2023
  • Background: Korean Red Ginseng (KRG), the steamed root of Panax ginseng, has pharmacological activities for immunological and neurodegenerative disorders. But, the role of KRGE in multiple sclerosis (MS) remains unclear. Purpose: To determine whether KRG extract (KRGE) could inhibit demyelination in corpus callosum (CC) of cuprizone (CPZ)-induced murine model of MS Methods: Male adult mice were fed with a standard chow diet or a chow diet supplemented with 0.2% (w/w) CPZ ad libitum for six weeks to induce demyelination while were simultaneously administered with distilled water (DW) alone or KRGE-DW (0.004%, 0.02 and 0.1% of KRGE) by drinking. Results: Administration with KRGE-DW alleviated demyelination and oligodendrocyte degeneration associated with inhibition of infiltration and activation of resident microglia and monocyte-derived macrophages as well as downregulation of proinflammatory mediators in the CC of CPZ-fed mice. KRGE-DW also attenuated the level of infiltration of Th1 and Th17) cells, in line with inhibited Mrna expression of IFN-γ and IL-17, respectively, in the CC. These positive effects of KRGE-DW mitigated behavioral dysfunction based on elevated plus maze and the rotarod tests. Conclusion: The results strongly suggest that KRGE-DW may inhibit CPZ-induced demyelination due to its oligodendroglial protective and anti-inflammatory activities by inhibiting infiltration/activation of immune cells. Thus, KRGE might have potential in therapeutic intervention for MS.

Different development patterns of reward behaviors induced by ketamine and JWH-018 in striatal GAD67 knockdown mice

  • Sun Mi Gu;Eunchong Hong;Sowoon Seo;Sanghyeon Kim;Seong Shoon Yoon;Hye Jin Cha;Jaesuk Yun
    • Journal of Veterinary Science
    • /
    • 제25권5호
    • /
    • pp.63.1-63.12
    • /
    • 2024
  • Importance: Glutamic acid decarboxylase 67 (GAD67) is a gamma-aminobutyric acid (GABA) synthesis enzyme associated with the function of other neurotransmitter receptors, such as the N-methyl-D-aspartate (NMDA) receptor and cannabinoid receptor 1. However, the role of GAD67 in the development of different abused drug-induced reward behaviors remains unknown. In order to elucidate the mechanisms of substance use disorder, it is crucial to study changes in biomarkers within the brain's reward circuit induced by drug use. Objective: The study was designed to examine the effects of the downregulation of GAD67 expression in the dorsal striatum on reward behavior development. Methods: We evaluated the effects of GAD67 knockdown on depression-like behavior and anxiety using the forced swim test and elevated plus maze test in a mouse model. We further determined the effects of GAD67 knockdown on ketamine- and JWH-018-induced conditioned place preference (CPP). Results: Knockdown of GAD67 in the dorsal striatum of mice increased depression-like behavior, but it decreased anxiety. Moreover, the CPP score on the NMDA receptor antagonist ketamine was increased by GAD67 knockdown, whereas the administration of JWH-018, a cannabinoid receptor agonist, did not affect the CPP score in the GAD67 knockdown mice group compared with the control group. Conclusions and Relevance: These results suggest that striatal GAD67 reduces GABAergic neuronal activity and may cause ketamine-induced NMDA receptor inhibition. Consequently, GAD67 downregulation induces vulnerability to the drug reward behavior of ketamine.

Repeated Neonatal Propofol Administration Induces Sex-Dependent Long-Term Impairments on Spatial and Recognition Memory in Rats

  • Gonzales, Edson Luck T.;Yang, Sung Min;Choi, Chang Soon;Mabunga, Darine Froy N.;Kim, Hee Jin;Cheong, Jae Hoon;Ryu, Jong Hoon;Koo, Bon-Nyeo;Shin, Chan Young
    • Biomolecules & Therapeutics
    • /
    • 제23권3호
    • /
    • pp.251-260
    • /
    • 2015
  • Propofol is an anesthetic agent that gained wide use because of its fast induction of anesthesia and rapid recovery post-anesthesia. However, previous studies have reported immediate neurodegeneration and long-term impairment in spatial learning and memory from repeated neonatal propofol administration in animals. Yet, none of those studies has explored the sex-specific long-term physical changes and behavioral alterations such as social (sociability and social preference), emotional (anxiety), and other cognitive functions (spatial working, recognition, and avoidance memory) after neonatal propofol treatment. Seven-day-old Wistar-Kyoto (WKY) rats underwent repeated daily intraperitoneal injections of propofol or normal saline for 7 days. Starting fourth week of age and onwards, rats were subjected to behavior tests including open-field, elevated-plus-maze, Y-maze, 3-chamber social interaction, novel-object-recognition, passive-avoidance, and rotarod. Rats were sacrificed at 9 weeks and hippocampal protein expressions were analyzed by Western blot. Results revealed long-term body weight gain alterations in the growing rats and sex-specific impairments in spatial (female) and recognition (male) learning and memory paradigms. A markedly decreased expression of hippocampal NMDA receptor GluN1 subunit in female- and increased expression of AMPA GluR1 subunit protein expression in male rats were also found. Other aspects of behaviors such as locomotor activity and coordination, anxiety, sociability, social preference and avoidance learning and memory were not generally affected. These results suggest that neonatal repeated propofol administration disrupts normal growth and some aspects of neurodevelopment in rats in a sex-specific manner.

소양인 형방도적산과 양격산화탕의 항 스트레스효과에 관한 실험적 연구 (An Experimental Study on the Anti-stress Effect by Soyangin Hyeongbangdojeok-san and Yanggyeoksanhwa-tang)

  • 이승엽;최애련;하진호;이정환;김판준;구덕모
    • 사상체질의학회지
    • /
    • 제20권3호
    • /
    • pp.151-163
    • /
    • 2008
  • 1. Objective This study was done to identify the anti-stress effect of Hyeongbangdojeok-san (HDS), Yanggyeoksanhwa-tang(YST) in Soyangin. 2. Methods Experimental animals were composed of YST, HDS+stress groups which were administered each by 200mg/kg, 400mg/kg and the Saline+stress group. On the 1st day, making the rats forced swim and on the 2nd day, applying Forced swimming test to the rats. After FST, the levels of Corticosterone in the blood were measured. For the study of learning retardation, memory ability and anxiety reaction, experimental animals were composed of YST, HDS+restraint stress groups which were administered each by 400mg/kg, no stress group and the Saline+restraint stress group. Restraint stress were applied 2 hours a day for 3 weeks. On the last day of the 3rd week, Elevated Plus Maze(EPM) was applied to the groups and Morris Water Maze(MWM) was applied to the groups for 7 days. 3. Results 1. As the results of measuring FST which reflects depression, the YST+stress group and the HDS+stress group showed significant effect in comparison with the Saline+stress group. The levels of Corticosterone in the blood were decreased only in the 400mg/kg YST+stress group. 2. As the results of measuring how long EPM which reflects anxiety reaction stayed in the open arm, there was the trend which can suppress anxiety reaction in the HDS+restraint stress group bur no statistical significance. But there was any suppression of anxiety reaction in the YST+restraint stress group. 3. According to the result of MWM, the saline+restraint stress group showed the learning retardation which means increased time arriving at goal compared to the normal group at the second and third day of measurement. On the contrary, a learning retardation was significantly decreased in the YST+restraint stress group at the third day of measurement. 4. Among the Probe trial test a memory loss occurred in the saline+restraint stress group, but memory ability was significantly increased in the YST+restraint stress group. 4. Conclusion: As the results above, Soyangin Yanggyeoksanhwa-tang has significant influence to the antidepression effect, the learning retardation, the anxiety reaction and also in the Hormone level. Hyeongbangdojeok-san has significant influence to the antidepression effect, in the Hormone level, bur not to the learning retardation and anxiety reaction. prefer to drink cold water, and who are suffering from chronic gastritis.

  • PDF

효모 추출물 SCE 및 그 분획 SCE-40의 항 우울 및 항 불안 효과 (Anti-depressant and anti-anxiety effects of Saccharomyces cerevisiae extract and its hydrolyzed fraction)

  • 정은이;정민숙;권영배;최윤석;변광호;김기원;심인섭
    • 감성과학
    • /
    • 제10권2호
    • /
    • pp.243-252
    • /
    • 2007
  • 효모 (Saccharomyces cerevisiae)는 인체에 무해한 Generally Recognized As Safe(GRAS)급으로 인정되며, 최근 효모 추출물이 정신적 긴장, 과민, 두통 같은 월경 전 증후군을 완화시키는 효과가 있음이 보고되어 있어, 효모추출물(Saccharomyces cerevisiae extract: SCE)과 그 분획(SCE-40)이 우울증과 불안증에서도 효과가 있는지 확인하고자 다음 실험을 실시하였다. 행동학적 검정으로 SCE의 항우울 효과를 확인하기 위해 SCE를 0, 1, 10, 100mg/kg의 농도로 웅성 ICR 생쥐에게 2주간 경구 투여한 후 강제수영검사(forced swimming test; FST)에서의 부동시간과, 또 다른 항우울 효과 검정 실험인 미현수검사(Tail Suspension Test: TST)에서의 부동시간을 측정하였다. 또한, SCE의 항불안 효과 검정을 위해서 SCE를 0, 1, 10, 100mg/kg의 농도로 웅성 ICR 생쥐에게 1회(1시간 전), 혹은 2주간 경구 투여한 후 고위십자미로검사(Elevated-plus-maze test : EPM)에서의 open arms에 머문 시간을 측정하였다 시험관내 실험으로는 웅성 백서의 대뇌피질에서의 SCE 및 SCE-40의 serotonin transporter (SERT), norepinephrine transporter(NET), 그리고 GABA의 ligand의 결합 억제능 측정과, serotonin (5-hydroxytryptamine: 5-HT), norepinephrine uptake 측정이 수행되었다. 행동적 실험 결과, FST에서 1회나 2주간 SCE 10mg/kg과 100mg/kg을 투여 받은 생쥐에서 생리 식염수만 투여 받은 생쥐보다 부동시간이 유의하게 감소됨을 보여 SCE에 의해 항우울 효과가 유발됨을 보였고, TST 실험에서도 유사한 결과가 나타났다. 또한, 항불안을 측정하는 EPM 실험에서도 1회나 2주간 SCE 10mg/kg과 100mg/kg을 투여 받은 생쥐에서 생리 식염수만 투여 받은 생쥐보다 open arms에서 머무는 시간이 유의하게 증가되어 SCE가 단기 또는 장기간의 항불안에 효과가 있음을 나타냈다. 시험관내 실험 결과에서는, SCE와 SCE-40이 SERT, NET, 그리고 GABA ligand의 결합 억제능이 있음이 확인되었고, SCE와 SCE-40은 serotonin(5-hydroxytryptamine: 5-HT)과, norepinephrine의 uptake를 억제하는 것으로 나타났다. 그러므로 본 연구는 효모 추출물(SCE)과 그 분획(SCE-40)이 행동적, 신경학적으로 항우울, 항불안에 효과가 있음을 확인하였으며, 효모 추출물(SCE)과 그 분획(SCE-40)이 안전한 천연식품으로서 우울증, 불안증 등의 관련 질환의 예방, 치료용 의약품 개발과 기능성 식품에 효과적으로 이용될 수 있음을 시사한다.

  • PDF

Anti-stress Effect of Scutellatia baicalensis in SD Rats and ICR Mice

  • Ryu, Jong-Hoon;Tan-Lee, Blendyl Saguan;Jung, Ji-Woong;Ahn, Nam-Yoon;Lee, Seung-Joo;Yu, Gu-Young;Han, Shin-Ha;Lee, Jeong-Hoon;Lee, Geum-Seon;Cheong, Jae-Hoon
    • Biomolecules & Therapeutics
    • /
    • 제12권1호
    • /
    • pp.34-42
    • /
    • 2004
  • The aim of this study is to investigate anti-stress effect of Scutellaria baicalensis(SB). The experiments were performed with the use of young (9 weeks of age) male rats of SD strain and the male ICR mice (20-25 g) at the time of first treatment with SB. Animals of the normal group were not exposed to any stress and the control group were exposed to stress. The rats of the Ginseng, Diazepam(BZ) and SB supplementary group were orally administered once a day 100 mg of red ginseng extract, 5 mg of BZ or 100 mg of SB extract/kg body weight and they were exposed to stress. The mice of the Ginseng, BZ and SB supplementary group were given water containing 200 mg of red ginseng extract, 10 mg of BZ or SB extract/100 ml potable water and exposed to stress. Animals were given supplements for 7 days without stress, and then were given supplement for 5 days with restraining and electroshock stress. We recorded stress related behavioral changes of the experimental animals by stressing them using the Etho-vision system and measured levels of blood corticosterone and IL-2. SB supplementation partially blocked the stress effect on locomotion in the rats and mice, and also partially blocked stress-induced behavioral changes such as freezing, burrowing, grooming, smelling, and rearing behavior in the rats and smelling, grooming, tailing, and rearing in the mice. in elevated plus maze test, the staying time of the stressed rats and mice in the open area decreased while it increased in the closed area. But these changes also partially were blocked by SB-supplementation. SB-supplementation decreased levels of the blood corticosterone which was increased by stress in the rats but did not significantly increase levels of blood interleukin 2 which was decreased by stress in mice.

Korean Red Ginseng attenuates anxiety-like behavior during ethanol withdrawal in rats

  • Zhao, ZhengLin;Kim, Young Woo;Wu, YiYan;Zhang, Jie;Lee, Ju-Hee;Li, XiaoHua;Cho, Il Je;Park, Sang Mi;Jung, Dae Hwa;Yang, Chae Ha;Kim, Sang Chan;Zhao, RongJie
    • Journal of Ginseng Research
    • /
    • 제38권4호
    • /
    • pp.256-263
    • /
    • 2014
  • Background: Korean Red Ginseng (KRG) is known to have antianxiety properties. This study was conducted to investigate the anxiolytic effects of KRG extract (KRGE) during ethanol withdrawal (EW) and the involvement of the mesoamygdaloid dopamine (DA) system in it. Methods: Rats were treated with 3 g/kg/d of ethanol for 28 d, and subjected to 3 d of withdrawal. During EW, KRGE (20 mg/kg/d or 60 mg/kg/d, p.o.) was given to rats once/d for 3 d. Thirty min after the final dose of KRGE, anxiety-like behavior was evaluated in an elevated plus maze (EPM), and plasma corticosterone (CORT) levels were determined by a radioimmunoassay (RIA). In addition, concentrations of DA and 3,4-dihydroxyphenylacetic acid (DOPAC) in the central nucleus of the amygdala (CeA) were also measured by high performance liquid chromatography (HPLC). Results: The EPM test and RIA revealed KRGE inhibited anxiety-like behavior and the over secretion of plasma CORT during EW. Furthermore, the behavioral effect was blocked by a selective DA D2 receptor (D2R) antagonist (eticlopride) but not by a selective DA D1 receptor (D1R) antagonist (SCH23390). HPLC analyses showed KRGE reversed EW-induced decreases of DA and DOPAC in a dose-dependent way. Additionally, Western blotting and real-time polymerase chain reaction (PCR) assays showed that KRGE prevented the EW-induced reductions in tyrosine hydroxylase (TH) protein expression in the CeA and TH mRNA expression in the ventral tegmental area (VTA). Conclusion: These results suggest that KRGE has anxiolytic effects during EW by improving the mesoamygdaloid DA system.