Repeated Neonatal Propofol Administration Induces Sex-Dependent Long-Term Impairments on Spatial and Recognition Memory in Rats |
Gonzales, Edson Luck T.
(Department of Neuroscience, School of Medicine, and Neuroscience Research Center, SMART-IABS and KU Open Innovation Center, Konkuk University)
Yang, Sung Min (Department of Neuroscience, School of Medicine, and Neuroscience Research Center, SMART-IABS and KU Open Innovation Center, Konkuk University) Choi, Chang Soon (Department of Neuroscience, School of Medicine, and Neuroscience Research Center, SMART-IABS and KU Open Innovation Center, Konkuk University) Mabunga, Darine Froy N. (Department of Neuroscience, School of Medicine, and Neuroscience Research Center, SMART-IABS and KU Open Innovation Center, Konkuk University) Kim, Hee Jin (Department of Pharmacy, Sahmyook University) Cheong, Jae Hoon (Department of Pharmacy, Sahmyook University) Ryu, Jong Hoon (Department of Oriental Pharmaceutical Science, Kyung Hee University) Koo, Bon-Nyeo (Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine) Shin, Chan Young (Department of Neuroscience, School of Medicine, and Neuroscience Research Center, SMART-IABS and KU Open Innovation Center, Konkuk University) |
1 | Anand, K. J. S., Phil, D. and Soriano, S. G. (2004) Anesthetic agents and the immature brain: Are these toxic or therapeutic? Anesthesiology 101, 527-530. DOI |
2 | Bevins, R. A. and Besheer, J. (2006) Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study 'recognition memory'. Nat. Protoc. 1, 1306-1311. DOI |
3 | Boon, W. C., Diepstraten, J., van der Burg, J., Jones, M. E., Simpson, E. R. and van den Buuse, M. (2005) Hippocampal NMDA receptor subunit expression and watermaze learning in estrogen deficient female mice. Brain Res. 140, 127-132. DOI |
4 | Brenhouse, H. C. and Andersen, S. L. (2011). Developmental trajectories during adolescence in males and females: a cross-species understanding of underlying brain changes. Neurosci. Biobehav. Rev. 35, 1687-1703. DOI |
5 | Briner, A., Nikonenko, I., De Roo, M., Dayer, A., Muller, D. and Vutskits, L. (2011) Developmental Stage-dependent persistent impact of propofol anesthesia on dendritic spines in the rat medial prefrontal cortex. Anesthesiology 115, 282-293. DOI |
6 | Broadbent, N. J., Squire, L. R. and Clark, R. E. (2004) Spatial memory, recognition memory, and the hippocampus. Proc. Natl. Acad. Sci. U.S.A. 101, 14515-14520. DOI |
7 | Cattano, D., Young, C., Straiko, M. M. and Olney, J. W. (2008) Subanesthetic doses of propofol induce neuroapoptosis in the infant mouse brain. Anesth. Analg 106, 1712-1714. DOI |
8 | Chen, P. E., Errington, M. L., Kneussel, M., Chen, G., Annala, A. J., Rudhard, Y. H., Rast, G. F., Specht, C. G., Tigaret, C. M., Nassar, M. A., Morris, R. G., Bliss, T. V. and Schoepfer, R. (2009) Behavioral deficits and subregion-specific suppression of LTP in mice expressing a population of mutant NMDA receptors throughout the hippocampus. Learn. Mem. 16, 635-644. DOI |
9 | Cui, Y., Ling-Shan, G., Yi, L., Xing-Qi, W., Xue-Mei, Z. and Xiao-Xing, Y. (2011) Repeated administration of propofol upregulated the expression of c-Fos and cleaved-caspase-3 proteins in the developing mouse brain. Indian J. Pharmacol. 43, 648-651. |
10 | D'Agata, V. and Cavallaro, S. (2003) Hippocampal gene expression profiles in passive avoidance conditioning. Eur. J. Neurosci. 18, 2835-2841. DOI |
11 | Dobbing, J. and Sands, J. (1973) Quantitative growth and development of human brain. Arch. Dis. Child. 48, 757-767. DOI |
12 | Feng, C. S., Qiu, J. P., Ma, H. C. and Yue, Y. (2007) Effect of propofol on synaptic long-term potentiation in hippocampal slices of rats. Chi. J. Prev. Med. 87, 763-767. |
13 | Flick, R. P., Katusic, S. K., Colligan, R. C., Wilder, R. T., Voigt, R. G., Olson, M. D., Sprung, J., Weaver, A. L., Schroeder, D. R. and Warner, D. O. (2011) Cognitive and behavioral outcomes after early exposure to anesthesia and surgery. Pediatrics 128, e1053-1061. DOI |
14 | Gao, J., Peng, S., Xiang, S., Huang, J. and Chen, P. (2014) Repeated exposure to propofol impairs spatial learning, inhibits LTP and reduces in young rats. Neurosci. Lett. 560, 62-66. DOI |
15 | Han, D., Tian, Y., Zhang, T., Ren, G. and Yang, Z. (2011) Nano-zinc oxide damages spatial cognition capability via over-enhanced long-term potentiation in hippocampus of Wistar rats. Int. J. Nanomedicine 6, 1453-1461. |
16 | Hasselmo, M. E. (2006) The role of acetylcholine in learning and memory. Curr. Opin. Neurobiol. 16, 710-715. DOI |
17 | Kikuchi, T., Wang, Y., Sato, K. and Okumura, F. (1998) In vivo effects of propofol on acetylcholine release from the frontal cortex, hippocampus and striatum studied by intracerebral microdialysis in freely moving rats. Br. J. Anaesth. 80, 644-648. DOI |
18 | Hayashi, H., Dikkes, P. and Soriano, S. G. (2002) Repeated administration of ketamine may lead to neuronal degeneration in the developing rat brain. Pediatr. Anaesth. 12, 770-774. DOI |
19 | Jevtovic-Todorovic, V., Hartman, R. E., Izumi, Y., Benshoff, N. D., Dikranian, K., Zorumski, C. F., Olney, J. W. and Wozniak, D. F. (2003) Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J. Neurosci 23, 876-882. |
20 | Karen, T., Schlager, G. W., Bendix, I., Sifringer, M., Herrmann, R., Pantazis, C., Enot, D., Keller, M., Kerner, T. and Felderhoff-Mueser, U. (2013) Effect of propofol in the immature rat brain on short- and long-term neurodevelopmental outcome. PloS One 8, e64480. DOI |
21 | Kim, K. C., Kim, P., Go, H. S., Choi, C. S., Yang, S.-I., Cheong, J. H., Shin, C. Y. and Ko, K. H. (2011). The critical period of valproate exposure to induce autistic symptoms in Sprague-Dawley rats. Toxicol. Lett. 201, 137-142. DOI ScienceOn |
22 | Li, J., Xiong, M., Alhashem, H. M., Zhang, Y., Tilak, V., Patel, A., Siegel, A., Ye, J. H. and Bekker, A. (2014) Effects of prenatal propofol exposure on postnatal development in rats. Neurotixicol. Teratol. 43, 51-58. DOI |
23 | Lynch, M. A. (2004) Long-term potentiation and memory. Physiol. Rev. 84, 87-136. DOI |
24 | Morgan, D., Munireddy, S., Alamed, J., DeLeon, J., Diamond, D. M., Bickford, P., Hutton, M., Lewis, J., McGowan, E. and Gordon, M. N. (2008) Apparent behavioral benefits of tau overexpression in P301L tau transgenic mice. J. Alzheimers Dis. 15, 605-614. DOI |
25 | Mallory, M. D., Baxter, A. L., Yanosky, D. J., Cravero, J. P. and Pediatric Sedation Research, C. (2011) Emergency physician-administered propofol sedation: a report on 25,433 sedations from the pediatric sedation research consortium. Ann Emerg Med 57, 462-468. DOI |
26 | Maurice, T., Phan, V. L., Noda, Y., Yamada, K., Privat, A. and Nabeshima, T. (1999) The attenuation of learning impairments induced after exposure to CO or trimethyltin in mice by sigma () receptor ligands involves both and sites. Br. J. Pharmacol. 127, 335-342. DOI |
27 | Milanovic, D., Popic, J., Pesic, V., Loncarevic-Vasiljkovic, N., Kanazir, S., Jevtovic-Todorovic, V. and Ruzdijic, S. (2010) Regional and temporal profiles of calpain and caspase-3 activities in postnatal rat brain following repeated propofol administration. Dev. Neurosci. 32, 288-301. DOI |
28 | Moy, S. S., Nadler, J. J., Perez, A., Barbaro, R. P., Johns, J. M., Magnuson, T. R., Piven, J. and Crawley, J. N. (2004) Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav. 3, 287-302. DOI |
29 | Nakazawa, K., McHugh, T. J., Wilson, M. A. and Tonegawa, S. (2004) NMDA receptors, place cells and hippocampal spatial memory. Nat. Rev. Neurosci. 5, 361-372. DOI |
30 | Paoletti, P., Bellone, C. and Zhou, Q. (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 14, 383-400. DOI |
31 | Satomoto, M., Satoh, Y., Terui, K., Miyao, H., Takishima, K., Ito, M. and Imaki, J. (2009) Neonatal exposure to sevoflurane induces abnormal social behaviors and deficits in fear conditioning in mice. Anesthesiology 110, 628-637. DOI |
32 | Pellow, S., Chopin, P., File, S. E. and Briley, M. (1985) Validation of open : closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J. Neurosci. Methods 14, 149-167. DOI |
33 | Prut, L. and Belzung, C. (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur. J. Pharmacol. 463, 3-33. DOI |
34 | Sarter, M., Bodewitz, G. and Stephens, D. N. (1988) Attenuation of scopolamine-induced impairment of spontaneous alternation behaviour by antagonist but not inverse agonist and agonist -carbolines. Psychopharmacology 94, 491-495. DOI |
35 | Sun, L. (2010) Early childhood general anaesthesia exposure and neurocognitive development. Br. J. Anaesth. 105 Suppl 1, i61-68. DOI |
36 | Uslaner, J. M., Parmentier-Batteur, S., Flick, R. B., Surles, N. O., Lam, J. S., McNaughton, C. H., Jacobson, M. A. and Hutson, P. H. (2009) Dose-dependent effect of CDPPB, the mGluR5 positive allosteric modulator, on recognition memory is associated with GluR1 and CREB phosphorylation in the prefrontal cortex and hippocampus. Neuropharmacology 57, 531-538. DOI |
37 | Wang, D., Noda, Y., Zhou, Y., Mouri, A., Mizoguchi, H., Nitta, A., Chen, W. and Nabeshima, T. (2007) The allosteric potentiation of nicotinic acetylcholine receptors by galantamine ameliorates the cognitive dysfunction in beta amyloid25-35 icv-injected mice: involvement of dopaminergic systems. Neuropsychopharmacol 32, 1261-1271. DOI |
38 | Xiong, M., Li, J., Alhashem, H. M., Tilak, V., Patel, A., Pisklakov, S., Siegel, A., Ye, J. H. and Bekker, A. (2014) Propofol exposure in pregnant rats induces neurotoxicity and persistent learning deficit in the offspring. Brain Sci. 4, 356-375. DOI |
39 | Weigt, H. U., Georgieff, M., Beyer, C. and Fohr, K. J. (2002) Activation of neuronal N-methyl-D-aspartate receptor channels by lipid emulsions. Anesth. Analg. 94, 331-337. DOI |
40 | Wilder, R. T., Flick, R. P., Sprung, J., Katusic, S. K., Barbaresi, W. J., Mickelson, C., Gleich, S. J., Schroeder, D. R., Weaver, A. L. and Warner, D. O. (2009) Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology 110, 796-804. DOI |
41 | Yan, J., Li, Y. R., Zhang, Y., Lu, Y. and Jiang, H. (2014) Repeated exposure to anesthetic ketamine can negatively impact neurodevelopment in infants: a prospective preliminary clinical study. J. Child. Neurol. 29, 1333-1338. DOI |
42 | Yon, J. H., Daniel-Johnson, J., Carter, L. B. and Jevtovic-Todorovic, V. (2005). Anesthesia induces neuronal cell death in the developing rat brain via the intrinsic and extrinsic apoptotic pathways. Neuroscience 135, 815-827. DOI |
43 | Yu, D., Jiang, Y., Gao, J., Liu, B. and Chen, P. (2013). Repeated exposure to propofol potentiates neuroapoptosis and long-term behavioral deficits in neonatal rats. Neurosci. Lett. 534, 41-46. DOI |