Browse > Article
http://dx.doi.org/10.4062/biomolther.2014.120

Repeated Neonatal Propofol Administration Induces Sex-Dependent Long-Term Impairments on Spatial and Recognition Memory in Rats  

Gonzales, Edson Luck T. (Department of Neuroscience, School of Medicine, and Neuroscience Research Center, SMART-IABS and KU Open Innovation Center, Konkuk University)
Yang, Sung Min (Department of Neuroscience, School of Medicine, and Neuroscience Research Center, SMART-IABS and KU Open Innovation Center, Konkuk University)
Choi, Chang Soon (Department of Neuroscience, School of Medicine, and Neuroscience Research Center, SMART-IABS and KU Open Innovation Center, Konkuk University)
Mabunga, Darine Froy N. (Department of Neuroscience, School of Medicine, and Neuroscience Research Center, SMART-IABS and KU Open Innovation Center, Konkuk University)
Kim, Hee Jin (Department of Pharmacy, Sahmyook University)
Cheong, Jae Hoon (Department of Pharmacy, Sahmyook University)
Ryu, Jong Hoon (Department of Oriental Pharmaceutical Science, Kyung Hee University)
Koo, Bon-Nyeo (Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine)
Shin, Chan Young (Department of Neuroscience, School of Medicine, and Neuroscience Research Center, SMART-IABS and KU Open Innovation Center, Konkuk University)
Publication Information
Biomolecules & Therapeutics / v.23, no.3, 2015 , pp. 251-260 More about this Journal
Abstract
Propofol is an anesthetic agent that gained wide use because of its fast induction of anesthesia and rapid recovery post-anesthesia. However, previous studies have reported immediate neurodegeneration and long-term impairment in spatial learning and memory from repeated neonatal propofol administration in animals. Yet, none of those studies has explored the sex-specific long-term physical changes and behavioral alterations such as social (sociability and social preference), emotional (anxiety), and other cognitive functions (spatial working, recognition, and avoidance memory) after neonatal propofol treatment. Seven-day-old Wistar-Kyoto (WKY) rats underwent repeated daily intraperitoneal injections of propofol or normal saline for 7 days. Starting fourth week of age and onwards, rats were subjected to behavior tests including open-field, elevated-plus-maze, Y-maze, 3-chamber social interaction, novel-object-recognition, passive-avoidance, and rotarod. Rats were sacrificed at 9 weeks and hippocampal protein expressions were analyzed by Western blot. Results revealed long-term body weight gain alterations in the growing rats and sex-specific impairments in spatial (female) and recognition (male) learning and memory paradigms. A markedly decreased expression of hippocampal NMDA receptor GluN1 subunit in female- and increased expression of AMPA GluR1 subunit protein expression in male rats were also found. Other aspects of behaviors such as locomotor activity and coordination, anxiety, sociability, social preference and avoidance learning and memory were not generally affected. These results suggest that neonatal repeated propofol administration disrupts normal growth and some aspects of neurodevelopment in rats in a sex-specific manner.
Keywords
Propofol; Anesthesia; Neurodevelopment; Sex-difference; Weight gain; Learning and memory;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Anand, K. J. S., Phil, D. and Soriano, S. G. (2004) Anesthetic agents and the immature brain: Are these toxic or therapeutic? Anesthesiology 101, 527-530.   DOI
2 Bevins, R. A. and Besheer, J. (2006) Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study 'recognition memory'. Nat. Protoc. 1, 1306-1311.   DOI
3 Boon, W. C., Diepstraten, J., van der Burg, J., Jones, M. E., Simpson, E. R. and van den Buuse, M. (2005) Hippocampal NMDA receptor subunit expression and watermaze learning in estrogen deficient female mice. Brain Res. 140, 127-132.   DOI
4 Brenhouse, H. C. and Andersen, S. L. (2011). Developmental trajectories during adolescence in males and females: a cross-species understanding of underlying brain changes. Neurosci. Biobehav. Rev. 35, 1687-1703.   DOI
5 Briner, A., Nikonenko, I., De Roo, M., Dayer, A., Muller, D. and Vutskits, L. (2011) Developmental Stage-dependent persistent impact of propofol anesthesia on dendritic spines in the rat medial prefrontal cortex. Anesthesiology 115, 282-293.   DOI
6 Broadbent, N. J., Squire, L. R. and Clark, R. E. (2004) Spatial memory, recognition memory, and the hippocampus. Proc. Natl. Acad. Sci. U.S.A. 101, 14515-14520.   DOI
7 Cattano, D., Young, C., Straiko, M. M. and Olney, J. W. (2008) Subanesthetic doses of propofol induce neuroapoptosis in the infant mouse brain. Anesth. Analg 106, 1712-1714.   DOI
8 Chen, P. E., Errington, M. L., Kneussel, M., Chen, G., Annala, A. J., Rudhard, Y. H., Rast, G. F., Specht, C. G., Tigaret, C. M., Nassar, M. A., Morris, R. G., Bliss, T. V. and Schoepfer, R. (2009) Behavioral deficits and subregion-specific suppression of LTP in mice expressing a population of mutant NMDA receptors throughout the hippocampus. Learn. Mem. 16, 635-644.   DOI
9 Cui, Y., Ling-Shan, G., Yi, L., Xing-Qi, W., Xue-Mei, Z. and Xiao-Xing, Y. (2011) Repeated administration of propofol upregulated the expression of c-Fos and cleaved-caspase-3 proteins in the developing mouse brain. Indian J. Pharmacol. 43, 648-651.
10 D'Agata, V. and Cavallaro, S. (2003) Hippocampal gene expression profiles in passive avoidance conditioning. Eur. J. Neurosci. 18, 2835-2841.   DOI
11 Dobbing, J. and Sands, J. (1973) Quantitative growth and development of human brain. Arch. Dis. Child. 48, 757-767.   DOI
12 Feng, C. S., Qiu, J. P., Ma, H. C. and Yue, Y. (2007) Effect of propofol on synaptic long-term potentiation in hippocampal slices of rats. Chi. J. Prev. Med. 87, 763-767.
13 Flick, R. P., Katusic, S. K., Colligan, R. C., Wilder, R. T., Voigt, R. G., Olson, M. D., Sprung, J., Weaver, A. L., Schroeder, D. R. and Warner, D. O. (2011) Cognitive and behavioral outcomes after early exposure to anesthesia and surgery. Pediatrics 128, e1053-1061.   DOI
14 Gao, J., Peng, S., Xiang, S., Huang, J. and Chen, P. (2014) Repeated exposure to propofol impairs spatial learning, inhibits LTP and reduces $CaMKII{\alpha}$ in young rats. Neurosci. Lett. 560, 62-66.   DOI
15 Han, D., Tian, Y., Zhang, T., Ren, G. and Yang, Z. (2011) Nano-zinc oxide damages spatial cognition capability via over-enhanced long-term potentiation in hippocampus of Wistar rats. Int. J. Nanomedicine 6, 1453-1461.
16 Hasselmo, M. E. (2006) The role of acetylcholine in learning and memory. Curr. Opin. Neurobiol. 16, 710-715.   DOI
17 Kikuchi, T., Wang, Y., Sato, K. and Okumura, F. (1998) In vivo effects of propofol on acetylcholine release from the frontal cortex, hippocampus and striatum studied by intracerebral microdialysis in freely moving rats. Br. J. Anaesth. 80, 644-648.   DOI
18 Hayashi, H., Dikkes, P. and Soriano, S. G. (2002) Repeated administration of ketamine may lead to neuronal degeneration in the developing rat brain. Pediatr. Anaesth. 12, 770-774.   DOI
19 Jevtovic-Todorovic, V., Hartman, R. E., Izumi, Y., Benshoff, N. D., Dikranian, K., Zorumski, C. F., Olney, J. W. and Wozniak, D. F. (2003) Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J. Neurosci 23, 876-882.
20 Karen, T., Schlager, G. W., Bendix, I., Sifringer, M., Herrmann, R., Pantazis, C., Enot, D., Keller, M., Kerner, T. and Felderhoff-Mueser, U. (2013) Effect of propofol in the immature rat brain on short- and long-term neurodevelopmental outcome. PloS One 8, e64480.   DOI
21 Kim, K. C., Kim, P., Go, H. S., Choi, C. S., Yang, S.-I., Cheong, J. H., Shin, C. Y. and Ko, K. H. (2011). The critical period of valproate exposure to induce autistic symptoms in Sprague-Dawley rats. Toxicol. Lett. 201, 137-142.   DOI   ScienceOn
22 Li, J., Xiong, M., Alhashem, H. M., Zhang, Y., Tilak, V., Patel, A., Siegel, A., Ye, J. H. and Bekker, A. (2014) Effects of prenatal propofol exposure on postnatal development in rats. Neurotixicol. Teratol. 43, 51-58.   DOI
23 Lynch, M. A. (2004) Long-term potentiation and memory. Physiol. Rev. 84, 87-136.   DOI
24 Morgan, D., Munireddy, S., Alamed, J., DeLeon, J., Diamond, D. M., Bickford, P., Hutton, M., Lewis, J., McGowan, E. and Gordon, M. N. (2008) Apparent behavioral benefits of tau overexpression in P301L tau transgenic mice. J. Alzheimers Dis. 15, 605-614.   DOI
25 Mallory, M. D., Baxter, A. L., Yanosky, D. J., Cravero, J. P. and Pediatric Sedation Research, C. (2011) Emergency physician-administered propofol sedation: a report on 25,433 sedations from the pediatric sedation research consortium. Ann Emerg Med 57, 462-468.   DOI
26 Maurice, T., Phan, V. L., Noda, Y., Yamada, K., Privat, A. and Nabeshima, T. (1999) The attenuation of learning impairments induced after exposure to CO or trimethyltin in mice by sigma (${\sigma}$) receptor ligands involves both ${\sigma}1$ and ${\sigma}2$ sites. Br. J. Pharmacol. 127, 335-342.   DOI
27 Milanovic, D., Popic, J., Pesic, V., Loncarevic-Vasiljkovic, N., Kanazir, S., Jevtovic-Todorovic, V. and Ruzdijic, S. (2010) Regional and temporal profiles of calpain and caspase-3 activities in postnatal rat brain following repeated propofol administration. Dev. Neurosci. 32, 288-301.   DOI
28 Moy, S. S., Nadler, J. J., Perez, A., Barbaro, R. P., Johns, J. M., Magnuson, T. R., Piven, J. and Crawley, J. N. (2004) Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav. 3, 287-302.   DOI
29 Nakazawa, K., McHugh, T. J., Wilson, M. A. and Tonegawa, S. (2004) NMDA receptors, place cells and hippocampal spatial memory. Nat. Rev. Neurosci. 5, 361-372.   DOI
30 Paoletti, P., Bellone, C. and Zhou, Q. (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 14, 383-400.   DOI
31 Satomoto, M., Satoh, Y., Terui, K., Miyao, H., Takishima, K., Ito, M. and Imaki, J. (2009) Neonatal exposure to sevoflurane induces abnormal social behaviors and deficits in fear conditioning in mice. Anesthesiology 110, 628-637.   DOI
32 Pellow, S., Chopin, P., File, S. E. and Briley, M. (1985) Validation of open : closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J. Neurosci. Methods 14, 149-167.   DOI
33 Prut, L. and Belzung, C. (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur. J. Pharmacol. 463, 3-33.   DOI
34 Sarter, M., Bodewitz, G. and Stephens, D. N. (1988) Attenuation of scopolamine-induced impairment of spontaneous alternation behaviour by antagonist but not inverse agonist and agonist ${\beta}$-carbolines. Psychopharmacology 94, 491-495.   DOI
35 Sun, L. (2010) Early childhood general anaesthesia exposure and neurocognitive development. Br. J. Anaesth. 105 Suppl 1, i61-68.   DOI
36 Uslaner, J. M., Parmentier-Batteur, S., Flick, R. B., Surles, N. O., Lam, J. S., McNaughton, C. H., Jacobson, M. A. and Hutson, P. H. (2009) Dose-dependent effect of CDPPB, the mGluR5 positive allosteric modulator, on recognition memory is associated with GluR1 and CREB phosphorylation in the prefrontal cortex and hippocampus. Neuropharmacology 57, 531-538.   DOI
37 Wang, D., Noda, Y., Zhou, Y., Mouri, A., Mizoguchi, H., Nitta, A., Chen, W. and Nabeshima, T. (2007) The allosteric potentiation of nicotinic acetylcholine receptors by galantamine ameliorates the cognitive dysfunction in beta amyloid25-35 icv-injected mice: involvement of dopaminergic systems. Neuropsychopharmacol 32, 1261-1271.   DOI
38 Xiong, M., Li, J., Alhashem, H. M., Tilak, V., Patel, A., Pisklakov, S., Siegel, A., Ye, J. H. and Bekker, A. (2014) Propofol exposure in pregnant rats induces neurotoxicity and persistent learning deficit in the offspring. Brain Sci. 4, 356-375.   DOI
39 Weigt, H. U., Georgieff, M., Beyer, C. and Fohr, K. J. (2002) Activation of neuronal N-methyl-D-aspartate receptor channels by lipid emulsions. Anesth. Analg. 94, 331-337.   DOI
40 Wilder, R. T., Flick, R. P., Sprung, J., Katusic, S. K., Barbaresi, W. J., Mickelson, C., Gleich, S. J., Schroeder, D. R., Weaver, A. L. and Warner, D. O. (2009) Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology 110, 796-804.   DOI
41 Yan, J., Li, Y. R., Zhang, Y., Lu, Y. and Jiang, H. (2014) Repeated exposure to anesthetic ketamine can negatively impact neurodevelopment in infants: a prospective preliminary clinical study. J. Child. Neurol. 29, 1333-1338.   DOI
42 Yon, J. H., Daniel-Johnson, J., Carter, L. B. and Jevtovic-Todorovic, V. (2005). Anesthesia induces neuronal cell death in the developing rat brain via the intrinsic and extrinsic apoptotic pathways. Neuroscience 135, 815-827.   DOI
43 Yu, D., Jiang, Y., Gao, J., Liu, B. and Chen, P. (2013). Repeated exposure to propofol potentiates neuroapoptosis and long-term behavioral deficits in neonatal rats. Neurosci. Lett. 534, 41-46.   DOI